
Lahey Fortran 90
Language Reference

Revision D

P. O. Box 6091
Incline Village, NV 89450

Printed on 50%

recycled paper

Copyright
Copyright © 1994-7 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual is
protected by federal copyright law. No part of this manual may be copied or distributed, transmitted, tran-
scribed, stored in a retrieval system, or translated into any human or computer language, in any form or
by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks
Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer
Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obliga-
tion of Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no
event shall Lahey Computer Systems, Inc. be liable for any loss of profit or any other commercial dam-
age, including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
 865 Tahoe Boulevard

 P.O. Box 6091
Incline Village, NV 89450-6091

(702) 831-2500
Fax: (702) 831-8123

http://www.lahey.com

Technical Support
(702) 831-2500

support@lahey.com

Table of Contents
37
8
9
0
0

41
2
2
3
6
6
6
9
3
3
4
4
56
7

9

0

1

8
9
9
0
0

Introduction...v
Manual Organization v
Notational Conventions vi

Elements of Fortran................................1
Character Set.. 1
Names .. 1
Statement Labels.. 2
Source Form .. 2

Fixed Source Form 2
Free Source Form .. 3

Data.. 4
Intrinsic Data Types 4
Kind... 4
Length.. 5
Literal Data.. 5
Named Data... 7
Substrings .. 9
Arrays .. 9
Dynamic Arrays .. 12
Array Constructors 14
Derived Types ... 15
Structure Constructors............................... 17
Pointers.. 18

Expressions.. 18
Intrinsic Operations 20

Input/Output... 21
Pre-Connected Input/Output Units............ 21
Files ... 21

Input/Output Editing...................................... 24
Format Control .. 24
Data Edit Descriptors 24
Control Edit Descriptors............................ 28
Character String Edit Descriptors 29
List-Directed Formatting........................... 30
Namelist Formatting.................................. 32

Statements.. 32
Control Statements 33
Specification Statements 34
Input/Output Statements............................ 36

Assignment and Storage Statements..........
Program Structure Statements3
Statement Order ...3

Executable Constructs....................................4
Construct Names..4

Procedures ..
Intrinsic Procedures4
Subroutines ..4
Functions..4
Internal Procedures4
Recursion ...4
Procedure Arguments4
Procedure Interfaces4

Program Units ..5
Main Program ..5
Block Data Program Units5
Module Program Units...............................5

Scope..
Data Sharing ..5

Alphabetical Reference59
ABS Function...5
ACHAR Function...59
ACOS Function..6
ADJUSTL Function60
ADJUSTR Function.......................................6
AIMAG Function ...61
AINT Function ...62
ALL Function...62
ALLOCATABLE Statement..........................63
ALLOCATE Statement..................................64
ALLOCATED Function.................................66
ANINT Function ..66
ANY Function..67
Arithmetic IF Statement (obsolescent)...........6
ASIN Function ...6
Assigned GOTO Statement (obsolescent)6
ASSIGN Statement (obsolescent)7
Assignment Statement....................................7
ASSOCIATED Function................................72
Lahey Fortran 90 Language Reference i

Contents

3
4
4
5
6
7
8
8
9
9
1
2

4
5
5
5
6
6
7
8
8

1
2
3
3

4

5
6
6
7
8
8
9
0

1

4
7
8

ATAN Function... 72
ATAN2 Function... 73
BACKSPACE Statement 73
BIT_SIZE Function....................................... 74
BLOCK DATA Statement 75
BREAK Subroutine....................................... 75
BTEST Function.. 76
CALL Statement.. 77
CARG Function... 79
CASE Construct .. 81
CASE Statement.. 82
CEILING Function.. 83
CHAR Function... 84
CHARACTER Statement.............................. 85
CLOSE Statement ... 87
CMPLX Function .. 88
COMMON Statement.................................... 89
COMPLEX Statement 91
Computed GOTO Statement 93
CONJG Function... 93
CONTAINS Statement.................................. 94
CONTINUE Statement.................................. 95
COS Function .. 95
COSH Function ... 96
COUNT Function .. 96
CPU_TIME Subroutine................................. 97
CSHIFT Function .. 98
CYCLE Statement... 99
DATA Statement... 99
DATE_AND_TIME Subroutine 101
DBLE Function ... 103
DEALLOCATE Statement.......................... 103
Derived-Type Definition Statement 104
DIGITS Function... 105
DIM Function .. 105
DIMENSION Statement.............................. 106
DLL_EXPORT Statement........................... 107
DLL_IMPORT Statement 107
DO Construct... 108
DO Statement .. 109
DOT_PRODUCT Function......................... 110
DOUBLE PRECISION Statement 111
DPROD Function .. 112
DVCHK Subroutine 113

ELSE IF Statement11
ELSE Statement ...11
ELSEWHERE Statement.............................11
END Statement ..11
END DO Statement......................................11
ENDFILE Statement....................................11
END IF Statement..11
END SELECT Statement.............................11
END WHERE Statement11
ENTRY Statement11
EOSHIFT Function......................................12
EPSILON Function......................................12
EQUIVALENCE Statement123
ERROR Subroutine......................................12
EXIT Statement ...12
EXIT Subroutine..12
EXP Function...12
EXPONENT Function12
EXTERNAL Statement12
FLOOR Function ...12
FLUSH Subroutine12
FORMAT Statement....................................12
FRACTION Function131
FUNCTION Statement13
GETCL Subroutine13
GETENV Function13
GOTO Statement ...13
HUGE Function ...13
IACHAR Function134
IAND Function ..135
IBCLR Function...13
IBITS Function ..13
IBSET Function ...13
ICHAR Function..13
IEOR Function ...13
IF Construct ...13
IF-THEN Statement13
IF Statement ...14
IMPLICIT Statement14
INCLUDE Line..142
INDEX Function..143
INQUIRE Statement14
INT Function..14
INTEGER Statement14
ii Lahey Fortran 90 Language Reference

Contents

1
1

4
4
5
6
6
7

8
8
9
9
0
0
3
4
4
5
5

8
8

1
1
3
4
5
5
6
7
8
8
9
9

1

2
3
3
4

INTENT Statement...................................... 150
INTERFACE Statement 151
INTRINSIC Statement 153
INTRUP Subroutine 154
INVALOP Subroutine 155
IOR Function ... 156
IOSTAT_MSG Subroutine.......................... 156
ISHFT Function... 157
ISHFTC Function .. 157
KIND Function .. 158
LBOUND Function 158
LEN Function .. 159
LEN_TRIM Function 160
LGE Function .. 160
LGT Function .. 161
LLE Function... 161
LLT Function... 162
LOG Function.. 162
LOG10 Function.. 163
LOGICAL Function 163
LOGICAL Statement................................... 164
MATMUL Function 166
MAX Function... 167
MAXEXPONENT Function........................ 167
MAXLOC Function..................................... 168
MAXVAL Function 169
MERGE Function .. 169
MIN Function .. 170
MINEXPONENT Function 171
MINLOC Function 171
MINVAL Function 172
MOD Function... 173
MODULE Statement 173
MODULE PROCEDURE Statement 174
MODULO Function 175
MVBITS Subroutine.................................... 176
NAMELIST Statement 176
NBREAK Subroutine 177
NDPERR Function 177
NDPEXC Subroutine................................... 178
NEAREST Function 179
NINT Function .. 179
NOT Function.. 180
NULLIFY Statement 180

OFFSET Function ..18
OPEN Statement ..18
OPTIONAL Statement.................................18
OVEFL Subroutine18
PACK Function..18
PARAMETER Statement.............................18
PAUSE Statement (obsolescent)..................18
Pointer Assignment Statement18
POINTER Function......................................18
POINTER Statement....................................18
PRECFILL Subroutine.................................18
PRECISION Function..................................18
PRESENT Function19
PRINT Statement ...19
PRIVATE Statement....................................19
PRODUCT Function....................................19
PROGRAM Statement19
PROMPT Subroutine19
PUBLIC Statement.......................................19
RADIX Function..196
RANDOM_NUMBER Subroutine197
RANDOM_SEED Subroutine197
RANGE Function...19
READ Statement..19
REAL Function ..20
REAL Statement ..20
REPEAT Function20
RESHAPE Function.....................................20
RETURN Statement.....................................20
REWIND Statement.....................................20
RRSPACING Function20
SAVE Statement ..20
SCALE Function..20
SCAN Function..20
SEGMENT Function....................................20
SELECT CASE Statement...........................20
SELECTED_INT_KIND Function..............210
SELECTED_REAL_KIND Function211
SEQUENCE Statement................................21
SET_EXPONENT Function212
SHAPE Function..21
SIGN Function ...21
SIN Function ..21
SINH Function ...21
Lahey Fortran 90 Language Reference iii

Contents
SIZE Function ... 214
SPACING Function..................................... 215
SPREAD Function 215
SQRT Function.. 216
Statement Function Statement..................... 217
STOP Statement .. 217
SUBROUTINE Statement........................... 218
SUM Function ... 219
SYSTEM Subroutine................................... 219
SYSTEM_CLOCK Subroutine 220
TAN Function.. 221
TANH Function... 221
TARGET Statement 222
TIMER Subroutine 222
TINY Function .. 223
TRANSFER Function 223
TRANSPOSE Function............................... 224
TRIM Function.. 225
Type Declaration Statement 225
TYPE Statement .. 226
UBOUND Function..................................... 227
UNDFL Subroutine 228
UNPACK Function 229
USE Statement .. 229
VAL Function.. 231
VERIFY Function 233
WHERE Construct 233
WHERE Statement...................................... 235
WRITE Statement 236
YIELD Subroutine 238

Fortran 77 Compatibility 241
Different Interpretation Under Fortran 90... 241
Obsolescent Features................................... 242
Popular Extensions 242

New in Fortran 90 245

Intrinsic Procedures........................... 249

Glossary .. 271

ASCII Character Set 281
iv Lahey Fortran 90 Language Reference

Introduction
rds.

 expe-

d
Lahey Fortran 90 is a complete implementation of the ANSI and ISO Fortran 90 standa
Numerous popular extensions are supported.

This manual is intended as a reference to the Fortran 90 language for programmers with
rience in Fortran. For information on creating programs using the Lahey Fortran 90
Language System, see the Lahey Fortran 90 User’s Guide.

Manual Organization
The manual is organized in six parts:

• Chapter 1, Elements of Fortran, takes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through
source form, data, expressions, input/output, statements, executable constructs, an
procedures, and ending with program units.

• Chapter 2, Alphabetical Reference, gives detailed syntax and constraints for Fortran
statements, constructs, and intrinsic procedures.

• Appendix A, Fortran 77 Compatibility, discusses issues of concern to programmers
who are compiling their Fortran 77 code with Lahey Fortran 90.

• Appendix B, New in Fortran 90, lists Fortran 90 features that were not part of stan-
dard Fortran 77.

• Appendix C, Intrinsic Procedures, is a table containing brief descriptions and spe-
cific names of procedures included with Lahey Fortran 90.

• Appendix D, Glossary, defines various technical terms used in this manual.

• Appendix E, ASCII Chart, details the 128 characters of the ASCII set.
Lahey Fortran 90 Language Reference v

Introduction

ar.
Notational Conventions
The following conventions are used throughout the manual:

blue text indicates an extension to the Fortran 90 standard.

code is indicated by courier font.

In syntax descriptions, [brackets] enclose optional items. An ellipsis, “...”, following an item
indicates that more items of the same form may appear. Italics indicate text to be replaced
by you. Non-italic letters in syntax descriptions are to be entered exactly as they appe
vi Lahey Fortran 90 Language Reference

1 Elements of Fortran

AC-

e.

nits. A
etters,
Character Set
The Fortran character set consists of

• letters:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

a b c d e f g h i j k l m n o p q r s t u v w x y z

• digits:

0 1 2 3 4 5 6 7 8 9

• special characters:

<blank> = + - * / () , . ' : ! " % & ; < > ? $

• and the underscore character ‘_’.

Special characters are used as operators, as separators or delimiters, or for grouping.

‘?’ and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case letters except in CHAR
TER literals.

The underscore character can be used as a non-leading significant character in a nam

Names
Names are used in Fortran to refer to various entities such as variables and program u
name starts with a letter, can be up to 31 characters in length and consists entirely of l
digits, and underscores. In fixed source form, a name can contain blanks, which are
ignored.
Lahey Fortran 90 Language Reference 1

Chapter 1 Elements of Fortran

t.

h is
wing

re than

of a
a line.
Examples of legal Fortran names are:

aAaAa apples_and_oranges r2d2

rose ROSE Rose

The three representations for the names on the line immediately above are equivalen

The following names are illegal:

_start_with_underscore

2start_with_a_digit

name_tooooooooooooooooooooooooooooooooo_long

illegal_@_character

Statement Labels
Fortran statements can have labels consisting of one to five digits, at least one of whic
non-zero. Leading zeros are not significant in distinguishing statement labels. The follo
labels are valid:

123

5000

10000

1

0001

The last two labels are equivalent. The same statement label must not be given to mo
one statement in a scoping unit.

Source Form
Fortran offers two source forms: fixed and free.

Fixed Source Form
Fixed source form is the traditional Fortran source form and is based on the columns
punched card. There are restrictions on where statements and labels can appear on
Except in CHARACTER literals, blanks are ignored.
2 Lahey Fortran 90 Language Reference

Free Source Form

.

r,

s
state-

RAC-
.

e. A
r labels

ywords,
Except within a comment:

• Columns 1 through 5 are reserved for statement labels. Labels can contain blanks

• Column 6 is used only to indicate a continuation line. If column 6 contains a blank
or zero, column 7 begins a new statement. If column 6 contains any other characte
columns 7 through 72 are a continuation of the previous non-comment line. There
can be up to 19 continuation lines. Continuation lines must not be labeled.

• Columns 7 through 72 are used for Fortran statements.

• Columns after 72 are ignored.

Fixed source form comments are formed by beginning a line with a ‘C’ or a ‘* ’ in column 1.
Additionally, trailing comments can be formed by placing a ‘! ’ in any column except column
6. A ‘! ’ in a CHARACTER literal does not indicate a trailing comment. Comment line
must not be continued, but a continuation line can contain a trailing comment. An END
ment must not be continued.

The ‘; ’ character can be used to separate statements on a line. If it appears in a CHA
TER literal or in a comment, the ‘; ’ character is not interpreted as a statement separator

Free Source Form
In free source form, there are no restrictions on where a statement can appear on a lin
line can be up to 132 characters long. Blanks are used to separate names, constants, o
from adjacent names, constants, or labels. Blanks are also used to separate Fortran ke
with the following exceptions, for which the blank separator is optional:

• BLOCK DATA
• DOUBLE PRECISION
• ELSE IF
• END BLOCK DATA
• END DO
• END FILE
• END FUNCTION
• END IF
• END INTERFACE
• END MODULE
• END PROGRAM
• END SELECT
• END SUBROUTINE
• END TYPE
• END WHERE
• GO TO
• IN OUT
• SELECT CASE
Lahey Fortran 90 Language Reference 3

Chapter 1 Elements of Fortran

 The

RAC-
.

line is
s split
ust be
label.
l-
ation

ent.
r

fer to

ta,

a fixed-
rs var-
,

C-
ut is

e kind.
repre-
D
The ‘! ’ character begins a comment except when it appears in a CHARACTER literal.
comment extends to the end of the line.

The ‘; ’ character can be used to separate statements on a line. If it appears in a CHA
TER literal or in a comment, the ‘; ’ character is not interpreted as a statement separator

The ‘&’ character as the last non-comment, non-blank character on a line indicates the
to be continued on the next non-comment line. If a name, constant, keyword, or label i
across the end of a line, the first non-blank character on the next non-comment line m
the ‘&’ character followed by successive characters of the name, constant, keyword, or
If a CHARACTER literal is to be continued, the ‘&’ character ending the line cannot be fo
lowed by a trailing comment. A free source form statement can have up to 39 continu
lines.

Comment lines cannot be continued, but a continuation line can contain a trailing comm
A line cannot contain only an ‘&’ character or contain an ‘&’ character as the only characte
before a comment.

Data
Fortran offers the programmer a variety of ways to store and refer to data. You can re
data literally, as in the real numbers 4.73 and 6.23E5 , the integers -3000 and 65536 , or the
CHARACTER literal "Continue (y/n)?" . Or, you can store and reference variable da
using names such as x or y , DISTANCE_FROM_ORIGIN or USER_NAME. Constants such as pi
or the speed of light can be given names and constant values. You can store data in
size area in memory, or allocate memory as the program needs it. Finally, Fortran offe
ious means of creating, storing, and referring to structured data, through use of arrays
pointers, and derived types.

Intrinsic Data Types
The five intrinsic data types are INTEGER, REAL, COMPLEX, LOGICAL, and CHARA
TER. The DOUBLE PRECISION data type available in Fortran 77 is still supported, b
considered a subset, or kind, of the REAL data type.

Kind
In Fortran, an intrinsic data type has one or more kinds. In Lahey Fortran, for the CHARAC-
TER, INTEGER, REAL, and LOGICAL data types, the kind type parameter (a number used
to refer to a kind) corresponds to the number of bytes used to represent each respectiv
For the COMPLEX data type, the kind type parameter is the number of bytes used to
sent the real or the imaginary part. Two intrinsic inquiry functions, SELECTED_INT_KIN
4 Lahey Fortran 90 Language Reference

Length

d on
ran 90

ified
es its
and SELECTED_REAL_KIND, are provided. Each returns a kind type parameter base
the required range and precision of a data object in a way that is portable to other Fort
systems. The kinds available in Lahey Fortran are summarized in the following table:

* default kinds

Length
The number of characters in a CHARACTER data object is indicated by its length type
parameter. For example, the CHARACTER literal “Half Marathon” has a length of
thirteen.

Literal Data
A literal datum, also known as a literal, literal constant, or immediate constant, is spec
as follows for each of the Fortran data types. The syntax of a literal constant determin
intrinsic type.

Table 1: Intrinsic Data Types

Type
Kind Type
Parameter

Notes

INTEGER 1 Range: -127 to 127

INTEGER 2 Range: -32,767 to 32,767

INTEGER 4* Range: -2,147,483,647 to 2,147,483,647

REAL 4*
Range: 1.18 * 10-38 to 3.40 * 1038

Precision: 7-8 decimal digits

REAL 8
Range: 2.23 * 10-308 to 1.79 * 10308

Precision: 15-16 decimal digits

COMPLEX 4*
Range: 1.18 * 10-38 to 3.40 * 1038

Precision: 7-8 decimal digits

COMPLEX 8
Range: 2.23 * 10-308 to 1.79 * 10308

Precision: 15-16 decimal digits

LOGICAL 1 Values: .TRUE. and .FALSE.

LOGICAL 4* Values: .TRUE. and .FALSE.

CHARACTER 1* ASCII character set
Lahey Fortran 90 Language Reference 5

Chapter 1 Elements of Fortran

e and
 of

eter

tants
r quo-

oint

r-
ional.
-
ples

d

EAL
t of
eter of
ision

h part,
 part.
INTEGER literals

An INTEGER literal consists of one or more digits preceded by an optional sign (+ or -) and
followed by an optional underscore and kind type parameter. If the optional underscor
kind type parameter are not present, the INTEGER literal is of default kind. Examples
valid INTEGER literals are

34 -256 345_4 +78_mykind

34 and -256 are of type default INTEGER. 345_4 is an INTEGER of kind 4 (default INTE-
GER in Lahey Fortran). In the last example, mykind must have been previously declared
as a scalar INTEGER named constant with the value of an INTEGER kind type param
(1, 2, or 4 in Lahey Fortran).

A binary, octal, or hexadecimal constant can appear in a DATA statement. Such cons
are formed by enclosing a series of binary, octal, or hexadecimal digits in apostrophes o
tation marks, and preceding the opening apostrophe or quotation mark with a B, O, or Z for
binary, octal, and hexadecimal representations, respectively. Two valid examples are

B'10101' Z"1AC3"

REAL literals

A REAL literal consists of one or more digits containing a decimal point (the decimal p
can appear before, within, or after the digits), optionally preceded by a sign (+ or -), and
optionally followed by an exponent letter and exponent, optionally followed by an unde
score and kind type parameter. If an exponent letter is present the decimal point is opt
The exponent letter is E for single precision and D for double precision. If the optional under
score and kind type parameter are not present, the REAL literal is of default kind. Exam
of valid REAL literals are

-3.45 .0001 34.E-4 1.4_8

The first three examples are of type default REAL. The last example is a REAL of kin8.

COMPLEX literals

A COMPLEX literal is formed by enclosing in parentheses a comma-separated pair of R
or INTEGER literals. The first of the REAL or INTEGER literals represents the real par
the complex number; the second represents the imaginary part. The kind type param
a COMPLEX constant is 8 if either the real or the imaginary part or both are double-prec
REAL, otherwise the kind type parameter is 4 (default COMPLEX). Examples of valid
COMPLEX literals are

(3.4,-5.45) (-1,-3) (3.4,-5) (-3.d13,6._8)

The first three examples are of default kind, where four bytes are used to represent eac
real or imaginary, of the complex number. The fourth example uses eight bytes for each
6 Lahey Fortran 90 Language Reference

Named Data

nd
sent,

phes

s,
ed as
ring
phe is

h the
ters

e prop-
f the
 data
ration

e. For
e data
 of a
LOGICAL literals
A LOGICAL literal is either .TRUE. or .FALSE., optionally followed by an underscore a
a kind type parameter. If the optional underscore and kind type parameter are not pre
the LOGICAL literal is of default kind. Examples of valid LOGICAL literals are:

.false. .true. .true._mykind

In the last example, mykind must have been previously declared as a scalar INTEGER
named constant with the value of a LOGICAL kind type parameter (1 or 4 in Elf90). The
first two examples are of type default LOGICAL.

CHARACTER literals
A CHARACTER literal consists of a string of characters enclosed in matching apostro
or quotation marks, optionally preceded by a kind type parameter and an underscore.

If a quotation mark is needed within a CHARACTER string enclosed in quotation mark
double the quotation mark inside the string. The doubled quotation mark is then count
a single quotation mark. Similarly, if an apostrophe is needed within a CHARACTER st
enclosed in apostrophes, double the apostrophe inside the string. The double apostro
then counted as a single apostrophe.

Examples of valid CHARACTER literals are

"Hello world"

'don''t give up the ship!'

ASCII_'foobeedoodah'

""

''

ASCII must have been previously declared as a scalar INTEGER named constant wit
value 1 to indicate the kind. The last two examples, which have no intervening charac
between the quotes or apostrophes, are zero-length CHARACTER literals.

Named Data
A named data object, such as a variable, named constant, or function result, is given th
erties of an intrinsic or user-defined data type, either implicitly (based on the first letter o
name) or through a type declaration statement. Additional information about a named
object, known as the data object’s attributes, can also be specified, either in a type decla
statement or in separate statements specific to the attributes that apply.

Once a data object has a name, it can be accessed in its entirety by referring to that nam
some data objects, such as character strings, arrays, and derived types, portions of th
object can also be accessed directly. In addition, aliases for a data object or a portion
data object, known as pointers, can be established and referred to.
Lahey Fortran 90 Language Reference 7

Chapter 1 Elements of Fortran

ned by
other
abled
ing

amed
e,

the fol-
te

Implicit Typing
In the absence of a type declaration statement, a named data object’s type is determi
the first letter of its name. The letters I through N begin INTEGER data objects and the
letters begin REAL data objects. These implicit typing rules can be customized or dis
using the IMPLICIT statement. IMPLICIT NONE can be used to disable all implicit typ
for a scoping unit.

Type Declaration Statements
A type declaration statement specifies the type, type parameters, and attributes of a n
data object or function. A type declaration statement is available for each intrinsic typ
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-
TER, as well as for derived types (see “Derived Types” on page 15).

Attributes
Besides type and type parameters, a data object or function can have one or more of
lowing attributes, which can be specified in a type declaration statement or in a separa
statement particular to the attribute:

• DIMENSION — the data object is an array (see “DIMENSION Statement” on page
106).

• PARAMETER — the data object is a named constant (see “PARAMETER State-
ment” on page 186).

• POINTER — the data object is to be used as an alias for another data object of the
same type, kind, and rank (see “POINTER Statement” on page 188).

• TARGET — the data object that is to be aliased by a POINTER data object (see
“TARGET Statement” on page 222).

• EXTERNAL — the name is that of an external procedure (see “EXTERNAL State-
ment” on page 126).

• ALLOCATABLE — the data object is an array that is not of fixed size, but is to have
memory allocated for it as specified during execution of the program (see “ALLO-
CATABLE Statement” on page 63).

• INTENT — the dummy argument value will not change in a procedure (INTENT
(IN)), will not be provided an initial value by the calling subprogram (INTENT
(OUT)), or both an initial value will be provided and a new value may result
(INTENT (IN OUT)) (see “INTENT Statement” on page 150).

• PUBLIC — the named data object or procedure in a MODULE program unit is
accessible in a program unit that uses that module (see “PUBLIC Statement” on page
195).

• PRIVATE — the named data object or procedure in a MODULE program unit is
accessible only in the current module (see “PRIVATE Statement” on page 193).
8 Lahey Fortran 90 Language Reference

Substrings

acters
har-

g,

ngular

e in
• INTRINSIC — the name is that of an intrinsic function (see “INTRINSIC Statement”
on page 153).

• OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in a reference to the procedure in which the dummy argument appears (see
“OPTIONAL Statement” on page 184).

• SAVE — the data object retains its value, association status, and allocation status
after a RETURN or END statement (see “SAVE Statement” on page 207).

• SEQUENCE — the order of the component definitions in a derived-type definition
is the storage sequence for objects of that type (see “SEQUENCE Statement” on
page 211).

Substrings
A character string is a sequence of characters in a CHARACTER data object. The char
in the string are numbered from left to right starting with one. A contiguous part of a c
acter string, called a substring, can be accessed using the following syntax:

string ([lower-bound] : [upper-bound])

Where:
string is a string name or a CHARACTER literal.

lower-bound is the lower bound of a substring of string.

upper-bound is the upper bound of a substring of string.

If absent, lower-bound and upper-bound are given the values one and the length of the strin
respectively. A substring has a length of zero if lower-bound is greater than upper-bound.
lower-bound must not be less than one.

For example, if abc_string is the name of the string "abcdefg" ,

abc_string(2:4) is “bcd”

abc_string(2:) is “bcdefg”

abc_string(:5) is “abcde”

abc_string(:) is “abcdefg”

abc_string(3:3) is “c”

“abcdef”(2:4) is “bcd”

“abcdef”(3:2) is a zero-length string

Arrays
An array is a set of data, all of the same type and type parameters, arranged in a recta
pattern of one or more dimensions. A data object that is not an array is a scalar. Arrays can
be specified by using the DIMENSION statement or by using the DIMENSION attribut
Lahey Fortran 90 Language Reference 9

Chapter 1 Elements of Fortran

s

 of an

ript

nce is

n of an
a type declaration statement. An array has a rank that is equal to the number of dimension
in the array; a scalar has rank zero. The array’s shape is its extent in each dimension. The
array’s size is the number of elements in the array. In the following example

integer, dimension (3,2) :: i

i has rank 2, shape (3,2), and size 6.

Array References
A whole array is referenced by the name of the array. Individual elements or sections
array are referenced using array subscripts.

Syntax:
array [(subscript-list)]

Where:
array is the name of the array.
subscript-list is a comma-separated list of
element-subscript
or subscript-triplet
or vector-subscript
element-subscript is a scalar INTEGER expression.
subscript-triplet is [element-subscript] : [element-subscript] [: stride]
stride is a scalar INTEGER expression.
vector-subscript is a rank one INTEGER array expression.

The subscripts in subscript-list each refer to a dimension of the array. The left-most subsc
refers to the first dimension of the array.

Array Elements
If each subscript in an array subscript list is an element subscript, then the array refere
to a single array element. Otherwise, it is to an array section (see “Array Sections” on page
11).

Array Element Order
The elements of an array form a sequence known as array element order. The positio
element of an array in the sequence is:

Where:
si is the subscript in the ith dimension.

j i is the lower bound of the ith dimension.

di is the size of the ith dimension.

n is the rank of the array.

1 s1 j1–()+() s2 j2–() d1×() … sn jn–() dn 1– dn 2– … d1×××()+ + +
10 Lahey Fortran 90 Language Reference

Arrays

nsion
 exam-

 array
 either

alar.

 upper
, respec-
er
f the
les of

array.

 the
rence
Another way of describing array element order is that the subscript of the leftmost dime
changes most rapidly as one goes from first element to last in array element order. For
ple, in the following code

integer, dimension(2,3) :: a

the order of the elements is a(1,1) , a(2,1) , a(1,2) , a(2,2) , a(1,3) , a(2,3) . When
performing input/output on arrays, array element order is used.

Array Sections
You can refer to a selected portion of an array as an array. Such a portion is called an
section. An array section has a subscript list that contains at least one subscript that is
a subscript triplet or a vector subscript (see the examples under “Subscript Triplets” and
“Vector Subscripts” below). Note that an array section with only one element is not a sc

Subscript Triplets
The three components of a subscript triplet are the lower bound of the array section, the
bound, and the stride (the increment between successive subscripts in the sequence)
tively. Any or all three can be omitted. If the lower bound is omitted, the declared low
bound of the dimension is assumed. If the upper bound is omitted, the upper bound o
dimension is assumed. If the stride is omitted, a stride of one is assumed. Valid examp
array sections using subscript triplets are:

a(2:8:2) ! a(2), a(4), a(6), a(8)

b(1,3:1:-1) ! b(1,3), b(1,2), b(1,1)

c(:,:,:) ! c

Vector Subscripts
A vector (one-dimensional array) subscript can be used to refer to a section of a whole
Consider the following example:

integer :: vector(3) = (/3,8,12/)

real :: whole(3,15)

...

print*, whole(3,vector)

Here the array vector is used as a subscript of whole in the PRINT statement, which prints
the values of elements (3,3), (3,8), and (3,12).

Arrays and Substrings
A CHARACTER array section or array element can have a substring specifier following
subscript list. If a whole array or an array section has a substring specifier, then the refe
is an array section. For example,

character (len=10), dimension (10,10) :: my_string

my_string(3:8,:) (2:4) = 'abc'
Lahey Fortran 90 Language Reference 11

Chapter 1 Elements of Fortran

 8 of

e in a

nt

cor-

or in
d-

 is allo-

ith the

ent.

a
assigns 'abc' to the array section made up of characters 2 through 4 of rows 3 through
the CHARACTER array my_string .

Dynamic Arrays
An array can be fixed in size at compile time or can assume a size or shape at run tim
number of ways:

• allocatable arrays and array pointers can be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statement. An array
pointer assumes the shape of its target when used in a pointer assignment stateme
(see “Allocatable Arrays” on page 12 and “Array Pointers” on page 12). Allocat-
able arrays and array pointers together are known as deferred-shape arrays.

• A dummy array can assume a size and shape based on the size and shape of the
responding actual argument (see “Assumed-Shape Arrays” on page 13).

• A dummy array can be of undeclared size (“Assumed-Size Arrays” on page 13).

• An array can have variable dimensions based on the values of dummy arguments
(“Adjustable and Automatic Arrays” on page 14).

Allocatable Arrays
The ALLOCATABLE attribute can be given to an array in a type declaration statement
an ALLOCATABLE statement. An allocatable array must be declared with the deferre
shape specifier, ‘:’, for each dimension. For example,

integer, allocatable :: a(:), b(:,:,:)

declares two allocatable arrays, one of rank one and the other of rank three.

The bounds, and thus the shape, of an allocatable array are determined when the array
cated with an ALLOCATE statement. Continuing the previous example,

allocate (a(3), b(1,3,-3:3))

allocates an array of rank one and size three and an array of rank three and size 21 w
lower bound -3 in the third dimension.

Memory for allocatable arrays is returned to the system using the DEALLOCATE statem

Array Pointers
The POINTER attribute can be given to an array in a type declaration statement or in
POINTER statement. An array pointer, like an allocatable array, is declared with the
deferred-shape specifier, ‘:’, for each dimension. For example

integer, pointer, dimension(:,:) :: c
12 Lahey Fortran 90 Language Reference

Dynamic Arrays

y an
ointer
ecomes

f

g
an be

. In
ve the

 must
intrin-
declares a pointer array of rank two. An array pointer can be allocated in the same wa
allocatable array can. Additionally, the shape of a pointer array can be set when the p
becomes associated with a target in a pointer assignment statement. The shape then b
that of the target.

integer, target, dimension(2,4) :: d

integer, pointer, dimension(:,:) :: c

c => d

In the above example, the array c becomes associated with array d and assumes the shape o
d.

Assumed-Shape Arrays
An assumed-shape array is a dummy array that assumes the shape of the correspondin
actual argument. The lower bound of an assumed-shape array can be declared and c
different from that of the actual argument array. An assumed-shape specification is

[lower-bound] :

for each dimension of the assumed-shape array. For example
...

integer :: a(3,4)

...

call zee(a)

...

subroutine zee(x)

implicit none

integer, dimension(-1:,:) :: x

...

Here the dummy array x assumes the shape of the actual argument a with a new lower bound
for dimension one.

The interface for an assumed-shape array must be explicit (see “Explicit Interfaces” on page
49).

Assumed-Size Arrays
An assumed-size array is a dummy array that’s size is not known. All bounds except the
upper bound of the last dimension are specified in the declaration of the dummy array
the declaration, the upper bound of the last dimension is an asterisk. The two arrays ha
same initial array element, and are storage associated.

You must not refer to an assumed-size array in a context where the shape of the array
be known, such as in a whole array reference or for many of the transformational array
sic functions. A function result can not be an assumed-size array.
Lahey Fortran 90 Language Reference 13

Chapter 1 Elements of Fortran

uch an

...

integer a

dimension a(4)

...

call zee(a)

...

subroutine zee(x)

integer, dimension(-1:*) :: x

...

In this example, the size of dummy array x is not known.

Adjustable and Automatic Arrays
You can establish the shape of an array based on the values of dummy arguments. If s
array is a dummy array, it is called an adjustable array. If the array is not a dummy array it
is called an automatic array. Consider the following example:

integer function bar(i, k)

integer :: i,j,k

dimension i(k,3), j(k)

...

Here the shapes of arrays i and j depend on the value of the dummy argument k . i is an
adjustable array and j is an automatic array.

Array Constructors
An array constructor is an unnamed array.

Syntax:
(/ constructor-values /)

Where:
constructor-values is a comma-separated list of
expr
or ac-implied-do

expr is an expression.

ac-implied-do is (constructor-values, ac-implied-do-control)

ac-implied-do-control is do-variable = do-expr, do-expr [, do-expr]

do-variable is a scalar INTEGER variable.

do-expr is a scalar INTEGER expression.
14 Lahey Fortran 90 Language Reference

Derived Types

, the
f ele-
 form

en be

AL,
me
ed

erived
f its
An array constructor is a rank-one array. If a constructor element is itself array-valued
values of the elements, in array-element order, specify the corresponding sequence o
ments of the array constructor. If a constructor value is an implied-do, it is expanded to
a sequence of values under the control of the do-variable as in the DO construct (see “DO
Construct” on page 108).

integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)

a = b + c + (/7,8,9/) ! a is assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can th
used to initialize or represent arrays of rank greater than one. For example

real,dimension(2,2) :: a = reshape((/1,2,3,4/),(/2,2/))

assigns (/1,2,3,4/) to a in array-element order after reshaping it to conform with the
shape of a.

Derived Types
Derived types are user-defined data types based on the intrinsic types, INTEGER, RE
COMPLEX, LOGICAL, and CHARACTER. Where an array is a set of data all of the sa
type, a derived type can be composed of a combination of intrinsic types or other deriv
types. A data object of derived type is called a structure.

Derived-Type Definition
A derived type must be defined before objects of the derived type can be declared. A d
type definition specifies the name of the new derived type and the names and types o
components.

Syntax:

derived-type-statement

[private-sequence-statement]

type-definition-statement

[type-definition-statement]

...

END TYPE [type-name]

Where:

derived-type-statement is a derived type statement.

private-sequence-statement is a PRIVATE statement.

or a SEQUENCE statement.

type-definition-statement is an INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, CHARACTER or TYPE statement.
Lahey Fortran 90 Language Reference 15

Chapter 1 Elements of Fortran

d
t be
te is

y,

e itself

d way

, is to
pe in

g an
 units

ples
A type definition statement in a derived type definition can have only the POINTER an
DIMENSION attributes. It cannot be initialized in the derived type definition and canno
a function. A component array must be a deferred-shape array if the POINTER attribu
present, otherwise it must have an explicit shape.

type coordinates

real :: latitude, longitude

end type coordinates

type place

character(len=20) :: name

type(coordinates) :: location

end type place

type link

integer :: j

type (link), pointer :: next

end type link

In the example, type coordinates is a derived type with two REAL components: lati-

tude and longitude . Type place has two components: a CHARACTER of length twent
name, and a structure of type coordinates named location . Type link has two compo-
nents: an INTEGER, j , and a structure of type link , named next , that is a pointer to the
same derived type. A component structure can be of the same type as the derived typ
only if it has the POINTER attribute. In this way, linked lists, trees, and graphs can be
formed.

There are two ways to use a derived type in more than one program unit. The preferre
is to define the derived type in a module (see “Module Program Units” on page 54) and use
the module wherever the derived type is needed. Another method, avoiding modules
use a SEQUENCE statement in the derived type definition, and to define the derived ty
exactly the same way in each program unit the type is used. This could be done usin
include file. Components of a derived type can be made inaccessible to other program
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type

Variables of derived type are declared with the TYPE statement. The following are exam
of declarations of variables for each of the derived types defined above:

type(coordinates) :: my_coordinates

type(place) :: my_town

type(place), dimension(10) :: cities

type(link) :: head
16 Lahey Fortran 90 Language Reference

Structure Constructors

,

po-
. For
onent.

efault
Component References

Components of a structure are referenced using the percent sign ‘%’ operator. For example,
latitude in the structure my_coordinates , above, is referenced as
my_coordinates%latitude . latitude in type coordinates in structure my_town is
referenced as my_town%coordinates%latitude . If the variable is an array of structures
as in cities , above, array sections can be referenced, such as

cities(:,:)%name

which references the component name for all elements of cities , and

cities(1,1:2)%coordinates%latitude

which references element latitude of type coordinates for elements (1,1) and (1,2)
only of cities . Note that in the first example, the syntax

cities%name

is equivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.

Syntax:

type-name (expr-list)

Where:

type-name is the name of the derived type.

expr-list is a list of expressions.

Each expression in expr-list must agree in number and order with the corresponding com
nents of the derived type. Where necessary, intrinsic type conversions are performed
non-pointer components, the shape of the expression must agree with that of the comp

type mytype ! derived-type definition

integer :: i,j

character(len=40) :: string

end type mytype

type (mytype) :: a ! derived-type declaration

a = mytype (4, 5.0*2.3, 'abcdefg')

In this example, the second expression in the structure constructor is converted to type d
INTEGER when the assignment is made.
Lahey Fortran 90 Language Reference 17

Chapter 1 Elements of Fortran

r the

 pointer

ation
inter,

t,

expres-
, and
Pointers
In Fortran, a pointer is an alias. The variable it aliases is its target. Pointer variables must
have the POINTER attribute; target variables must have either the TARGET attribute o
POINTER attribute.

Associating a Pointer with a Target
A pointer can only be associated with a variable that has the TARGET attribute or the
POINTER attribute. Such an association can be made in one of two ways:

• explicitly with a pointer assignment statement.

• implicitly with an ALLOCATE statement.

Once an association between pointer and target has been made, any reference to the
applies to the target.

Declaring Pointers and Targets

A variable can be declared to have the POINTER or TARGET attribute in a type declar
statement or in a POINTER or TARGET statement. When declaring an array to be a po
you must declare the array with a deferred shape.

Example:

integer, pointer :: a, b(:,:)

integer, target :: c

a => c ! pointer assignment statement

 ! a is an alias for c

allocate (b(3,2)) ! allocate statement

 ! an unnamed target for b is

 ! created with the shape (3,2)

In this example, an explicit association is created between a and c through the pointer assign-
ment statement. Note that a has been previously declared a pointer, c has been previously
declared a target, and a and c agree in type, kind, and rank. In the ALLOCATE statemen
a target array is allocated and b is made to point to it. The array b was declared with a
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions
An expression is formed from operands, operators, and parentheses. Evaluation of an
sion produces a value with a type, type parameters (kind and, if CHARACTER, length)
a shape. Some examples of valid Fortran expressions are:
18 Lahey Fortran 90 Language Reference

Expressions

ement
ed like
n

low. If
ion are
ra-

ssion.

y to
5
n
(n+1)*y
"to be" // ’ or not to be’ // text(1:23)
(-b + (b**2-4*a*c)**.5) / (2*a)
b%a - a(1:1000:10)
sin(a) .le. .5
l .my_binary_operator. r + .my_unary_operator. m

The last example uses defined operations (see “Defined Operations” on page 51).

All array-valued operands in an expression must have the same shape. A scalar is conform-
able with an array of any shape. Array-valued expressions are evaluated element-by-el
for corresponding elements in each array and a scalar in the same expression is treat
an array where all elements have the value of the scalar. For example, the expressio

a(2:4) + b(1:3) + 5

would perform

a(2) + b(1) + 5
a(3) + b(2) + 5
a(4) + b(3) + 5

Expressions are evaluated according to the rules of operator precedence, described be
there are multiple contiguous operations of the same precedence, subtraction and divis
evaluated from left to right, exponentiation is evaluated from right to left, and other ope
tions can be evaluated either way, depending on how the compiler optimizes the expre
Parentheses can be used to enforce a particular order of evaluation.

A specification expression is a scalar INTEGER expression that can be evaluated on entr
the program unit at the time of execution. An initialization expression is an expression that
can be evaluated at compile time.
Lahey Fortran 90 Language Reference 19

Chapter 1 Elements of Fortran

d has

igher

rent

he
Intrinsic Operations
The intrinsic operators, in descending order of precedence are:

 Note: all operators within a given cell in the table are of equal precedence

If an operation is performed on operands of the same type, the result is of that type an
the greater of the two kind type parameters.

If an operation is performed on numeric operands of different types, the result is of the h
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.

If an operation is performed on numeric or LOGICAL operands of the same type but diffe
kind, the result has the kind of the operand offering the greater precision.

The result of a concatenation operation has a length that is the sum of the lengths of t
operands.

Table 2: Intrinsic Operators

Operator Represents Operands

** exponentiation two numeric

* and / multiplication and division two numeric

+ and - unary addition and subtraction one numeric

+ and - binary addition and subtraction two numeric

// concatenation two CHARACTER

.EQ. and ==
.NE. and /=

.LT. and <

.LE. and <=
.GT. and >

.GE. and >=

equal to
not equal to

less than

less than or equal to
greater than

greater than or equal to

two numeric or two
CHARACTER
–––––––––––

two non-COMPLEX
numeric or two CHAR-

ACTER

.NOT. logical negation one LOGICAL

.AND. logical conjunction two LOGICAL

.OR. logical inclusive disjunction two LOGICAL

.EQV. and
.NEQV.

logical equivalence and non-
equivalence

two LOGICAL
20 Lahey Fortran 90 Language Reference

Input/Output

st to
. For

e-

evices
hin
-

ted to
 output
 files.

l files,
d or
 the

tion
icated
ile is
t is
and
INTEGER Division
The result of a division operation between two INTEGER operands is the integer close
the mathematical quotient and between zero and the mathematical quotient, inclusive
example, 7/5 evaluates to 1 and -7/5 evaluates to -1 .

Input/Output
Fortran input and output are performed on logical units. A unit is

• a non-negative INTEGER associated with a physical device such as a disk file, the
console, or a printer. The unit must be connected to a file or device in an OPEN stat
ment, except in the case of pre-connected files.

• an asterisk, ‘*’, indicating the standard input and standard output devices, usually the
keyboard and monitor, that are preconnected.

• a CHARACTER variable corresponding to the name of an internal file.

Fortran statements are available to connect (OPEN) or disconnect (CLOSE) files and d
from input/output units; transfer data (PRINT, READ, WRITE); establish the position wit
a file (REWIND, BACKSPACE, ENDFILE); and inquire about a file or device or its con
nection (INQUIRE).

Pre-Connected Input/Output Units
Input/output units 5, 6 and * are automatically connected when used. Unit 5 is connec
the standard input device, usually the keyboard, and unit 6 is connected to the standard
device, usually the monitor. Units 5 and 6 can be connected to other physical devices or
Unit * is always connected to the standard input and standard output devices.

Files
Fortran treats all physical devices, such as disk files, the console, printers, and interna
as files. A file is a sequence of zero or more records. The data format (either formatte
unformatted), file access type (either direct or sequential) and record length determine
structure of the file.

File Position
Certain input/output statements affect the position within an external file. Prior to execu
of a data transfer statement, a direct file is positioned at the beginning of the record ind
by the record specifier REC= in the data transfer statement. By default, a sequential f
positioned after the last record read or written. However, if non-advancing input/outpu
specified using the ADVANCE= specifier, it is possible to read or write partial records
to read variable-length records and be notified of their length.
Lahey Fortran 90 Language Reference 21

Chapter 1 Elements of Fortran

 posi-
al

 end-

ondi-
d. If

and
An ENDFILE statement writes an endfile record after the last record read or written and
tions the file after the endfile record. A REWIND statement positions the file at its initi
point. A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of the file is indeterminate.

If there is no error, and an endfile record is read or written, the file is positioned after the
file record. The file must be repositioned with a REWIND or BACKSPACE statement
before it is read from or written to again.

For non-advancing (partial record) input/output, if there is no error and no end-of-file c
tion, but an end-of-record condition occurs, the file is positioned after the record just rea
there is no end-of-record condition the file position is unchanged.

File Types

The type of file to be accessed is specified in the OPEN statement using the FORM=
ACCESS= specifiers (see “OPEN Statement” on page 181).

Formatted Sequential

• variable-length records terminated by end of line

• stored as CHARACTER data

• can be used with devices or disk files

• records must be processed in order

• files can be printed or displayed easily

• usually slowest

Formatted Direct

• fixed-length records - record zero is a header

• stored as CHARACTER data

• disk files only

• records can be accessed in any order

• not easily processed outside of Lahey Fortran

• same speed as formatted sequential disk files

Unformatted Sequential

• variable length records separated by record marker

• stored as binary data

• disk files only

• records must be processed in order

• faster than formatted files

• not easily read outside of Lahey Fortran
22 Lahey Fortran 90 Language Reference

Files

ER
ated
ary,
 an

 or a
rinted
as
Unformatted Direct

• fixed-length records - record zero is a header
• stored as binary data
• disk files only
• records can be accessed in any order
• fastest
• not easily read outside of Lahey Fortran

Transparent

• stored as binary data without record markers or header
• record length one byte but end-of-record restrictions do not apply
• records can be processed in any order
• can be used with disk files or other physical devices
• good for files that are accessed outside of Lahey Fortran
• fast and compact

See “File Formats” in the User's Guide for more information.

Internal Files
An internal file is always a formatted sequential file and consists of a single CHARACT
variable. If the CHARACTER variable is array-valued, each element of the array is tre
as a record in the file. This feature allows conversion from internal representation (bin
unformatted) to external representation (ASCII, formatted) without transferring data to
external device.

Carriage Control
The first character of a formatted record sent to a terminal device, such as the console
printer, is used for carriage control and is not printed. The remaining characters are p
on one line beginning at the left margin. The carriage control character is interpreted
follows:

Table 3: Carriage Control

Character Vertical Spacing Before Printing

0 Two Lines

1 To First Line of Next Page

+ None

Blank or Any
Other Charac-

ter
One Line
Lahey Fortran 90 Language Reference 23

Chapter 1 Elements of Fortran

n be

,
tput
 cor-

ptor is

t/

e

Input/Output Editing
Fortran provides extensive capabilities for formatting, or editing, of data. The editing ca
explicit, using a format specification; or implicit, using list-directed input/output, in which
data are edited using a predetermined format (see “List-Directed Formatting” on page 30).
A format specification is a default CHARACTER expression and can appear

• directly as the FMT= specifier value.

• in a FORMAT statement whose label is the FMT= specifier value.

• in a FORMAT statement whose label was assigned to a scalar default INTEGER
variable that appears as the FMT= specifier value.

The syntax for a format specification is

 ([format-items])

where format-items includes editing information in the form of edit descriptors. See “FOR-
MAT Statement” on page 128 for detailed syntax.

Format Control
A correspondence is established between a format specification and items in a READ
WRITE or PRINT statement’s input/output list in which the edit descriptors and input/ou
list are both interpreted from left to right. Each effective edit descriptor is applied to the
responding data entity in the input/output list. Each instance of a repeated edit descri
an edit descriptor in effect. Three exceptions to this rule are

1. COMPLEX items in the input/output list require the interpretation of two F, E, EN,
ES, D or G edit descriptors.

2. Control and character string edit descriptors do not correspond to items in the inpu
output list.

3. If the end of a complete format is encountered and there are remaining items in th
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the
format otherwise. If format control reverts to a parenthesis preceded by a repeat
specification, the repeat specification is reused.

Data Edit Descriptors
Data edit descriptors control conversion of data to or from its internal representation.
24 Lahey Fortran 90 Language Reference

Data Edit Descriptors

utput

f
n

at an

g

nal
int is

or an
tain a
le fac-
Numeric Editing
The I, B, O, Z, F, E, EN, ES, D, and G edit descriptors can be used to specify the input/o
of INTEGER, REAL, and COMPLEX data. The following general rules apply:

• On input, leading blanks are not significant.

• On output, the representation is right-justified in the field.

• On output, if the number of characters produced exceeds the field width the entire
field is filledwith asterisks.

INTEGER Editing (I, B, O, and Z)
The Iw, Iw.m, Bw, Bw.m, Ow, Ow.m, Zw, and Zw.m edit descriptors indicate the manner o
editing for INTEGER data. The w indicates the width of the field on input, including a sig
(if present). The m indicates the minimum number of digits on output; m must not exceed w.
The output width is padded with blanks if the number is smaller than the field. Note th
input width must always be specified.

REAL Editing (F, D, and E)
The Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of editin
of REAL and COMPLEX data.

F, D, E, EN, and ES editing are identical on input. The w indicates the width of the field;
the d indicates the number of digits in the fractional part. The field consists of an optio
sign, followed by one or more digits that can contain a decimal point. If the decimal po
omitted, the rightmost d digits are interpreted as the fractional part. An exponent can be
included in one of the following forms:

• An explicitly signed INTEGER constant.

• E or D followed by an optionally signed INTEGER constant.

For F editing, the output field consists of zero or more blanks followed by a minus sign
optional plus sign (see S, SP, and SS Editing), followed by one or more digits that con
decimal point and represent the magnitude. The field is modified by the established sca
tor (see P Editing) and is rounded to d decimal digits.
Lahey Fortran 90 Language Reference 25

Chapter 1 Elements of Fortran

ts

int.

cimal
 equal
o effect

 nota-
s than
For E and D editing, the output field consists of the following, in order:

1. zero or more blanks

2. a minus or an optional plus sign (see S, SP, and SS Editing)

3. a zero (depending on scale factor, see P Editing)

4. a decimal point

5. the d most significant digits, rounded

6. an E or a D

7. a plus or a minus sign

8. an exponent of e digits, if the extended Ew.dEe form is used, and two digits
otherwise.

For E and D editing, the scale factor k controls the position of the decimal point. If
, the output field contains exactly leading zeros and significant digi

after the decimal point. If , the output field contains exactly k significant digits
to the left of the decimal point and significant digits to the right of the decimal po
Other values of k are not permitted.

EN Editing
The EN edit descriptor produces an output field in engineering notation such that the de
exponent is divisible by three and the absolute value of the significand is greater than or
to 1 and less than 1000, except when the output value is zero. The scale factor has n
on output.

The forms of the edit descriptor are ENw.d and ENw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part e
digits.

On input, EN editing is the same as F editing.

ES Editing
The ES edit descriptor produces an output field in the form of a real number in scientific
tion such that the absolute value of the significand is greater than or equal to 1 and les
10, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor are ESw.d and ESw.dEe indicating that the external field
occupies w positions, the fractional part of which consists of d digits and the exponent part e
digits.

On input, ES editing is the same as F editing.

d– k< 0≤ k d k–
0 k d 2+< <

d k– 1+
26 Lahey Fortran 90 Language Reference

Data Edit Descriptors

edit
dit
dit
g edit

ed
ield.
 pro-
tter is

lue

ield
COMPLEX Editing
COMPLEX editing is accomplished by using two REAL edit descriptors. The first of the
descriptors specifies the real part; the second specifies the imaginary part. The two e
descriptors can be different. Control edit descriptors can be processed between the e
descriptor for the real part and the edit descriptor for the imaginary part. Character strin
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)
The Lw edit descriptor indicates that the field occupies w positions. The specified input/out-
put list item must be of type LOGICAL.

The input field consists of optional blanks, optionally followed by a decimal point, follow
by a T for true or F for false. The T or F can be followed by additional characters in the f
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms. If a
cessor is capable of representing letters in both upper and lower case, a lower-case le
equivalent to the corresponding upper-case letter in a LOGICAL input field.

The output field consists of w - 1 blanks followed by a T or F, depending on whether the va
of the internal data object is true or false, respectively.

CHARACTER Editing (A)
The A[w] edit descriptor is used with an input/output list item of type CHARACTER.

If a field width w is specified with the A edit descriptor, the field consists of w characters. If
a field width w is not specified with the A edit descriptor, the number of characters in the f
is the length of the corresponding list item.

Let len be the length of the list item. On input, if w is greater than or equal to len, the right-
most len characters will be taken from the field; if w is less than len, the w characters are left-
justified and padded with len-w trailing blanks.

On output, the list item is padded with leading blanks if w is greater than len. If w is less than
or equal to len, the output field consists of the leftmost w characters of the list item.

Generalized Editing (G)
The Gw.d and Gw.dEe edit descriptors can be used with an input/output list item of any
intrinsic type.

These edit descriptors indicate that the external field occupies w positions, the fractional part
of which consists of a maximum of d digits and the exponent part e digits. d and e have no
effect when used with INTEGER, LOGICAL, or CHARACTER data.

Generalized Integer Editing

With INTEGER data, the Gw.d and Gw.dEe edit descriptors follow the rules for the Iw edit
descriptor.
Lahey Fortran 90 Language Reference 27

Chapter 1 Elements of Fortran

 object

 the E

de
ng.

ent

ord
her
wice,

n.

fer to
sly

 posi-
ential
.

Generalized Real and Complex Editing

The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data
being edited. If the decimal point falls just before, within, or just after the d significant digits
to be printed, then the output is as for the F edit descriptor; otherwise, editing is as for
edit descriptor.

Note that the scale factor k (see “P Editing” on page 29) has no effect unless the magnitu
of the data object to be edited is outside the range that permits effective use of F editi

Generalized Logical Editing

With LOGICAL data, the Gw.d and Gw.dEe edit descriptors follow the Lw edit descriptor
rules.

Generalized Character Editing

With CHARACTER data, the Gw.d and Gw.dEe edit descriptors follow the Aw edit descrip-
tor rules.

Control Edit Descriptors
Control edit descriptors affect format control or the conversions performed by subsequ
data edit descriptors.

Position Editing (T, TL, TR, and X)

The Tn, TLn, TRn, and nX edit descriptors control the character position in the current rec
to or from which the next character will be transferred. The new position can be in eit
direction from the current position. This makes possible the input of the same record t
possibly with different editing. It also makes skipping characters in a record possible.

The Tn edit descriptor tabs to character position n from the beginning of the record. The TLn
and TRn edit descriptors tab n characters left or right, respectively, from the current positio
The nX edit descriptor tabs n characters right from the current position.

If the position is changed to beyond the length of the current record, the next data trans
or from the record causes the insertion of blanks in the character positions not previou
filled.

Slash Editing

The slash edit descriptor terminates data transfer to or from the current record. The file
tion advances to the beginning of the next record. On output to a file connected for sequ
access, a new record is written and the new record becomes the last record in the file
28 Lahey Fortran 90 Language Reference

Character String Edit Descriptors

put/
utput

d in
causes
.

,

l-

-

h

riptor
 BZ
 zeros.

ey

clud-
Colon Editing
The colon edit descriptor terminates format control if there are no more items in the in
output list. The colon edit descriptor has no effect if there are more items in the input/o
list.

S, SP, and SS Editing
The S, SP, and SS edit descriptors control whether an optional plus is to be transmitte
subsequent numeric output fields. SP causes the optional plus to be transmitted. SS
it not to be transmitted. S returns optional pluses to the processor default (no pluses)

P Editing
The kP edit descriptor sets the value of the scale factor to k. The scale factor affects the F, E
EN, ES, D, or G editing of subsequent numeric quantities as follows:

• On input (provided that no exponent exists in the field) the scale factor causes the
externally represented number to be equal to the internally represented number mu
tiplied by 10k. The scale factor has no effect if there is an exponent in the field.

• On output, with E and D editing, the significand part of the quantity to be produced
is multiplied by 10k and the exponent is reduced by k.

• On output, with G editing, the effect of the scale factor is suspended unless the mag
nitude of the data object to be edited is outside the range that permits the use of F
editing. If the use of E editing is required, the scale factor has the same effect as wit
E output editing.

• On output, with EN and ES editing, the scale factor has no effect.

• On output, with F editing, the scale factor effect is that the externally represented
number equals the internally represented number times 10k.

BN and BZ Editing
The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit
descriptors, of non-leading blanks in subsequent numeric input fields. If a BN edit desc
is encountered in a format, blanks in subsequent numeric input fields are ignored. If a
edit descriptor is encountered, blanks in subsequent numeric input fields are treated as

Character String Edit Descriptors
The character string edit descriptors cause literal CHARACTER data to be output. Th
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from a string, in
ing blanks. Enclosing characters are either apostrophes or quotation marks.
Lahey Fortran 90 Language Reference 29

Chapter 1 Elements of Fortran

ters
tive
if quo-
e or
r

stead

e either

r one
 of the
For a CHARACTER string edit descriptor, the width of the field is the number of charac
contained in, but not including, the delimiting characters. Within the field, two consecu
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks,
tation marks are the delimiters) are counted as a single character. Thus an apostroph
quotation mark character can be output as part of a CHARACTER string edit descripto
delimited by the same character.

H Editing (obsolescent)

The cH edit descriptor causes character information to be written from the next c characters
(including blanks) following the H of the cH edit descriptor in the list of format items itself.
The c characters are called a Hollerith constant.

List-Directed Formatting
List-directed formatting is indicated when an input/output statement uses an asterisk in
of an explicit format. For example,

read*, a

print*, x,y,z

read (unit=1, fmt=*) i,j,k

all use list-directed formatting.

List-Directed Input
List-directed records consist of a sequence of values and value separators. Values ar
null or any of the following forms:

c

r*c

r*

Where:

c is a literal constant or a non-delimited CHARACTER string.

r is a positive INTEGER literal constant with no kind type parameter specified.

r*c is equivalent to r successive instances of c.

r* is equivalent to r successive instances of null.

Separators are either commas or slashes with optional preceding or following blanks; o
or more blanks between two non-blank values. A slash separator causes termination
input statement after transfer of the previous value.
30 Lahey Fortran 90 Language Reference

List-Directed Formatting

wing
Editing occurs based on the type of the list item as explained below. On input the follo
formatting applies:

List-Directed Output
For list-directed output the following formatting applies:

Table 4: List-Directed Input Editing

Type Editing

INTEGER I

REAL F

COMPLEX As for COMPLEX literal constant

LOGICAL L

CHARACTER

As for CHARACTER string. CHARACTER
string can be continued from one record to the

next. Delimiting apostrophes or quotation marks
are not required if the CHARACTER string does
not cross a record boundary and does not contain
value separators or CHARACTER string delimit-

ers, or begin with r*.

Table 5: List-Directed Output Editing

Type Editing

INTEGER Gw

REAL Gw.d

COMPLEX (Gw.d, Gw.d)

LOGICAL T for value true and F for value false

CHARACTER
As CHARACTER string, except as overridden by

the DELIM= specifier
Lahey Fortran 90 Language Reference 31

Chapter 1 Elements of Fortran

d

state-
alues

ter 2,
Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.
Namelist input and output consists of

1. optional blanks

2. the ampersand character followed immediately by the namelist group name specifie
in the namelist input/output statement

3. one or more blanks

4. a sequence of zero or more name-value subsequences, and

5. a slash indicating the end of the namelist record.

The characters in namelist records form a sequence of name-value subsequences. A name-
value subsequence is a data object or subobject previously declared in a NAMELIST
ment to be part of the namelist group, followed by an equals, followed by one or more v
and value separators.

Formatting for namelist records is the same as for list-directed records.

Example:
integer :: i,j(10)
real :: n(5)
namelist /my_namelist/ i,j,n
read(*,nml=my_namelist)

If the input records are

&my_namelist i=5, n(3)=4.5,
j(1:4)=4*0/

then 5 is stored in i , 4.5 in n(3) , and 0 in elements 1 through 4 of j .

Statements
A brief description of each statement follows. For complete syntax and rules, see Chap
“Alphabetical Reference.”

Fortran statements can be grouped into five categories. They are

• Control Statements

• Specification Statements

• Input/Output Statements

• Assignment and Storage Statements

• Program Structure Statements
32 Lahey Fortran 90 Language Reference

Control Statements

y a
label
 zero,

nt indi-
he
.

The
 a
cuted.

cution

truct

ct

state-
false.
Control Statements
Arithmetic IF (obsolescent)
Execution of an arithmetic IF statement causes evaluation of an expression followed b
transfer of control. The branch target statement identified by the first, second, or third
in the arithmetic IF statement is executed next if the value of the expression is less than
equal to zero, or greater than zero, respectively.

Assigned GOTO (obsolescent)
The assigned GOTO statement causes a transfer of control to the branch target stateme
cated by a variable that was assigned a statement label in an ASSIGN statement. If t
parenthesized list of labels is present, the variable must be one of the labels in the list

CALL
The CALL statement invokes a subroutine and passes to it a list of arguments.

CASE
Execution of a SELECT CASE statement causes a case expression to be evaluated.
resulting value is called the case index. If the case index is in the range specified with
CASE statement’s case selector, the block following the CASE statement, if any, is exe

Computed GOTO
The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CYCLE statement curtails the execution of a single iteration of a DO loop.

DO
The DO statement begins a DO construct. A DO construct specifies the repeated exe
(loop) of a sequence of executable statements or constructs.

ELSE IF
The ELSE IF statement controls conditional execution of a nested IF block in an IF cons
where all previous IF expressions are false.

ELSE
The ELSE statement controls conditional execution of a block of code in an IF constru
where all previous IF expressions are false.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment
ments for elements of an array for which the WHERE construct’s mask expression is

END DO
The END DO statement ends a DO construct.

END IF
The END IF statement ends an IF construct.
Lahey Fortran 90 Language Reference 33

Chapter 1 Elements of Fortran

ith a

ontrol

at,
ct to

t state-
ore

ble
END SELECT
The END SELECT statement ends a CASE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each w
different entry point.

EXIT
The EXIT statement terminates a DO loop.

GOTO
The GOTO statement transfers control to a statement identified by a label.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an IF construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement completes execution of a subroutine or function and returns c
to the statement following the procedure invocation.

SELECT CASE
The SELECT CASE statement begins a CASE construct. It contains an expression th
when evaluated, produces a case index. The case index is used in the CASE constru
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE
The WHERE statement is used to mask the assignment of values in array assignmen
ments. The WHERE statement can begin a WHERE construct that contains zero or m
assignment statements, or can itself contain an assignment statement.

Specification Statements
ALLOCATABLE
The ALLOCATABLE statement declares allocatable arrays. The shape of an allocata
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.
34 Lahey Fortran 90 Language Reference

Specification Statements

stor-
e

e the

e as

lter-

s.
actual

ame
COMMON
The COMMON statement provides a global data facility. It specifies blocks of physical
age, called common blocks, that can be accessed by any scoping unit in an executabl
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement provides initial values for variables. It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares names of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifies that two or more objects in a scoping unit shar
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures. Specifying a procedure nam
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT
The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the statement. A
nately, it can specify that no implicit typing is to apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.

INTRINSIC
The INTRINSIC statement specifies a list of names that represent intrinsic procedure
Doing so permits a name that represents a specific intrinsic function to be used as an
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifies a list of variables which can be referred to by one n
for the purpose of performing input/output.
Lahey Fortran 90 Language Reference 35

Chapter 1 Elements of Fortran

art of

ot be

.

n the

e mod-

, allo-
ent.

at the

d thus

ent are

g unit.
ule.

rrent
MODULE PROCEDURE
The MODULE PROCEDURE statement specifies that the names in the statement are p
a generic interface.

OPTIONAL
The OPTIONAL statement specifies that any of the dummy arguments specified need n
associated with an actual argument when the procedure is invoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifies a list of variables that have the POINTER attribute

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only withi
current module.

PUBLIC
The PUBLIC statement specifies that the names of entities are accessible anywhere th
ule in which the PUBLIC statement appears is used.

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that all objects in the statement retain their association
cation, definition, and value after execution of a RETURN or subprogram END statem

SEQUENCE
The SEQUENCE statement can only appear in a derived type definition. It specifies th
order of the component definitions is the storage sequence for objects of that type.

TARGET
The TARGET statement specifies a list of object names that have the target attribute an
can have pointers associated with them.

TYPE
The TYPE statement specifies that all entities whose names are declared in the statem
of the derived type named in the statement.

USE
The USE statement specifies that a specified module is accessible by the current scopin
It also provides a means of renaming or limiting the accessibility of entities in the mod

Input/Output Statements
BACKSPACE
The BACKSPACE statement positions the file before the current record, if there is a cu
record, otherwise before the preceding record.
36 Lahey Fortran 90 Language Reference

Assignment and Storage Statements

exter-

e is

the

, con-

 in an

d in

ion

ET

on the
CLOSE
The CLOSE statement terminates the connection of a specified input/output unit to an
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of the file. The fil
then positioned after the endfile record, which becomes the last record of the file.

FORMAT
The FORMAT statement provides explicit information that directs the editing between
internal representation of data and the characters that are input or output.

INQUIRE
The INQUIRE statement enables the program to make inquiries about a file’s existence
nection, access method or other properties.

OPEN
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified
input list or a namelist group.

REWIND
The REWIND statement positions the specified file at its initial point.

WRITE
The WRITE statement transfers values to an input/output unit from the entities specifie
an output list or a namelist group.

Assi gnment and Stora ge Statements
ALLOCATE
For an allocatable array the ALLOCATE statement defines the bounds of each dimens
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly has the TARG
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment
Assigns the value of the expression on the right side of the equal sign to the variable
left side of the equal sign.
Lahey Fortran 90 Language Reference 37

Chapter 1 Elements of Fortran

isas-

gram

 and
ursive.

e
 be

y
DEALLOCATE

The DEALLOCATE statement deallocates allocatable arrays and pointer targets and d
sociates pointers.

NULLIFY

The NULLIFY statement disassociates pointers.

Pointer Assignment

The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA

The BLOCK DATA statement begins a block data program unit.

CONTAINS

The CONTAINS statement separates the body of a main program, module, or subpro
from any internal or module subprograms it contains.

END

The END statement ends a program unit, module subprogram, interface, or internal
subprogram.

FUNCTION

The FUNCTION statement begins a function subprogram, and specifies its return type
name (the function name by default), its dummy argument names, and whether it is rec

INTERFACE

The INTERFACE statement begins an interface block. An interface block specifies th
forms of reference through which a procedure can be invoked. An interface block can
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE

The MODULE statement begins a module program unit.

PROGRAM

The PROGRAM statement specifies a name for the main program.

Statement Function

A statement function is a function defined by a single statement.

SUBROUTINE

The SUBROUTINE statement begins a subroutine subprogram and specifies its dumm
argument names and whether it is recursive.
38 Lahey Fortran 90 Language Reference

Statement Order

pro-

ents
rsed.

Statement Order
There are restrictions on where a given statement can appear in a program unit or sub
gram. In general,

• USE statements come before specification statements;

• specification statements appear before executable statements, but FORMAT,
DATA, and ENTRY statements can appear among the executable statements; and

• module procedures and internal procedures appear following a CONTAINS
statement.

The following table summarizes statement order rules. Vertical lines separate statem
that can be interspersed. Horizontal lines separate statements that cannot be interspe

Statements are restricted in what scoping units (see “Scope” on page 56) they may appear,
as follows:

• An ENTRY statement may only appear in an external subprogram or module
subprogram.

• A USE statement may not appear in a BLOCK DATA program unit.
• A FORMAT statement may not appear in a module scoping unit, BLOCK DATA

program unit, or interface body.

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,
or BLOCK DATA statement

USE statements

FORMAT
and

ENTRY
statements

IMPLICIT NONE

PARAMETER
statements

IMPLICIT
statements

PARAMETER
and DATA
statements

Derived-type definitions,
interface blocks,

type declaration statements,
statement function statements,
and specification statements

DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement
Lahey Fortran 90 Language Reference 39

Chapter 1 Elements of Fortran

ructs.

struct
YCLE
t

 has a
 same
• A DATA statement may not appear in an interface body.
• A derived-type definition may not appear in a BLOCK DATA program unit.
• An interface block may not appear in a BLOCK DATA program unit.
• A statement function may not appear in a module scoping unit, BLOCK DATA pro-

gram unit, or interface body.
• An executable statement may not appear in a module scoping unit, a BLOCK DATA

program unit, or an interface body.
• A CONTAINS statement may not appear in a BLOCK DATA program unit, an inter-

nal subprogram, or an interface body.

Executable Constructs
Executable constructs control the execution of blocks of statements and nested const

• The CASE and IF constructs control whether a block will be executed (see “CASE
Construct” on page 81 and “IF Construct” on page 138).

• The DO construct controls how many times a block will be executed (see “DO Con-
struct” on page 108).

• The WHERE construct controls which elements of an array will be affected by a
block of assignment statements (see “WHERE Construct” on page 233).

Construct Names
Optional construct names can be used with CASE, IF, and DO constructs. Use of con
names can add clarity to a program. For the DO construct, construct names enable a C
or EXIT statement to leave a DO nesting level other than the current one. All construc
names must match for a given construct. For example, if a SELECT CASE statement
construct name, the corresponding CASE and END SELECT statements must have the
construct name.
40 Lahey Fortran 90 Language Reference

Procedures

rther

iled.
n be

ed

word
Procedures
Fortran has two varieties of procedures: functions and subroutines. Procedures are fu
categorized in the following table:

Intrinsic procedures are built-in procedures that are provided by the Fortran processor.

An external procedure is defined in a separate program unit and can be separately comp
It is not necessarily coded in Fortran. External procedures and intrinsic procedures ca
referenced anywhere in the program.

An internal procedure is contained within another program unit. It can only be referenc
from within the containing program unit.

Internal and external procedures can be referenced recursively if the RECURSIVE key
is included in the procedure definition.

Table 7: Procedures

Functions

Intrinsic
Functions

Generic Intrinsic
Functions

Specific Intrinsic
Functions

External
Functions

Generic External
Functions

Specific External
Functions

Internal Functions

Statement Functions

Subroutines

Intrinsic
Subroutines

Generic Intrinsic
Subroutines

Specific Intrinsic
Subroutines

External Sub-
routines

Generic External
Subroutines

Specific External
Subroutines

Internal Subroutines
Lahey Fortran 90 Language Reference 41

Chapter 1 Elements of Fortran

sed is

ray

n has
lpha-

or
Intrinsic and external procedures can be either specific or generic. A generic procedure has
specific versions, which can be referenced by the generic name. The specific version u
determined by the type, kind, and rank of the arguments.

Additionally, intrinsic procedures can be elemental or non-elemental. An elemental intrinsic
procedure can take as an argument either a scalar or an array. If the procedure takes an ar
as an argument, it operates on each element in the array as if it were a scalar.

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures
Intrinsic procedures are built-in procedures provided by the Fortran processor. Fortra
over one hundred standard intrinsic procedures. Each is documented in detail in the A
betical Reference. A table is provided in “Intrinsic Procedures” on page 249.

Subroutines
A subroutine is a self-contained procedure that is invoked using a CALL statement. F
example,

program main

 implicit none

 interface ! an explicit interface is provided

 subroutine multiply(x, y)

 implicit none

 real, intent(in out) :: x

 real, intent(in) :: y

 end subroutine multiply

 end interface

 real :: a, b

 a = 4.0

 b = 12.0

 call multiply(a, b)

 print*, a

end program main

subroutine multiply(x, y)

 implicit none

 real, intent(in out) :: x

 real, intent(in) :: y

 multiply = x*y

end subroutine multiply
42 Lahey Fortran 90 Language Reference

Functions

xpres-
This program calls the subroutine multiply and passes two REAL actual arguments, a and
b. The subroutine multiply ’s corresponding dummy arguments, x and y , refer to the same
storage as a and b in main . When the subroutine returns, a has the value 48.0 and b is
unchanged.

The syntax for a subroutine definition is

subroutine-stmt
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmt is a SUBROUTINE statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is
CONTAINS
procedure-definitions

procedure-definitions is one or more procedure definitions.

end-subroutine-stmt is
END [SUBROUTINE [subroutine-name]]

subroutine-name is the name of the subroutine.

Functions
A function is a procedure that produces a single scalar or array result. It is used in an e
sion in the same way a variable is. For example, in the following program,
Lahey Fortran 90 Language Reference 43

Chapter 1 Elements of Fortran

.

program main
 implicit none
 interface ! an explicit interface is provided
 function square(x)
 implicit none
 real, intent(in) :: x
 real :: square
 end function square
 end interface
 real :: a, b=3.6, c=3.8, square
 a = 3.7 + b + square(c) + sin(4.7)
 print*, a
 stop
end program main

function square(x)
 implicit none
 real, intent(in) :: x
 real :: square
 square = x*x
 return
end function square

square(c) and sin(4.7) are function references.

The syntax for a function reference is

function-name (actual-arg-list)

Where:
function-name is the name of the function.

actual-arg-list is a list of actual arguments.

A function can be defined as an internal or external function or as a statement function
44 Lahey Fortran 90 Language Reference

Functions

ernal

 unit
t than
ssion.
External Functions

External functions can be called from anywhere in the program. The syntax for an ext
function definition is

function-stmt

[use-stmts]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt

Where:

function-stmt is a FUNCTION statement.

use-stmts is zero or more USE statements.

specification-part is zero or more specification statements.

execution part is zero or more executable statements.

internal-subprogram-part is

CONTAINS

procedure-definitions

procedure-definitions is one or more procedure definitions.

end-function-stmt is

END [FUNCTION [function-name]]

function-name is the name of the function.

Statement Functions

A statement function (see “Statement Function Statement” on page 217) is a function defined
on a single line with a single expression. It can only be referenced within the program
in which it is defined. A statement function is best used where speed is more importan
reusability in other locations, and where the function can be expressed in a single expre
The following is an example equivalent to the external function example in “Functions” on
page 43:
Lahey Fortran 90 Language Reference 45

Chapter 1 Elements of Fortran

e host

ear
edure

d

-
ly

 pro-
program main

real :: a, b=3.6, c=3.8, square

square(x) = x*x

a = 3.7 + b + square(c) + sin(4.7)

print*, a

end

Internal Procedures
A procedure can contain other procedures, which can be referenced only from within th
procedure. Such procedures are known as internal procedures. An internal procedure is
specified within the host procedure following a CONTAINS statement, which must app
after all the executable code of the containing subprogram. The form of an internal proc
is the same as that of an external procedure.

Example:
subroutine external ()

 ...

 call internal () ! reference to internal procedure

 ...

contains

 subroutine internal () ! only callable from external()

...

 end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure. This is callehost
association.

Recursion
A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR
SIVE keyword is specified in the procedure definition. A function that calls itself direct
must use the RESULT option (see “FUNCTION Statement” on page 131).

Procedure Arguments
Arguments provide a means of passing information between a calling procedure and a
cedure it calls. The calling procedure provides a list of actual arguments. The called
procedure accepts a list of dummy arguments.
46 Lahey Fortran 90 Language Reference

Procedure Arguments

en an
rom
 have

r in

nt
st. To
ollow-

 argu-
e
ment

st be
Argument Intent
Because Fortran passes arguments by reference, unwanted side effects can occur wh
actual argument’s value is changed by the called procedure. To protect the program f
such unwanted side effects, the INTENT attribute is provided. A dummy argument can
one of the following attributes:

• INTENT (IN), when it is to be used to input data to the procedure and not to return
results to the calling subprogram;

• INTENT (OUT), when it is to be used to return results but not to input data; and

• INTENT (IN OUT), when it is to be used for inputting data and returning a result.
This is the default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement o
a type declaration statement.

Keyword Arguments
Using keyword arguments, the programmer can specify explicitly which actual argume
corresponds to which dummy argument, regardless of position in the actual argument li
do so, specify the dummy argument name along with the actual argument, using the f
ing syntax:

keyword = actual-arg

Where:

keyword is the dummy argument name.

actual-arg is the actual argument.

Example:
...

call zee(c=1, b=2, a=3)

...

subroutine zee(a,b,c)

...

In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual
ments (see “Optional Arguments” below). For those arguments not having keywords, th
order in the actual argument list determines the correspondence with the dummy argu
list. Keyword arguments must appear after any non-keyword arguments.

Note that for a procedure invocation to use keyword arguments an explicit interface mu
present (see “Procedure Interfaces” on page 49).
Lahey Fortran 90 Language Reference 47

Chapter 1 Elements of Fortran

he
 for

 the
tional
ample,

m-

nt has
n
ummy
ent to

sent

ing an

hich
Optional Arguments
An actual argument need not be provided for a corresponding dummy argument with t
OPTIONAL attribute. To make an argument optional, specify the OPTIONAL attribute
the dummy argument, either in a type declaration statement or with the OPTIONAL
statement.

An optional argument at the end of a dummy argument list can simply be omitted from
corresponding actual argument list. Keyword arguments must be used to omit other op
arguments, unless all of the remaining arguments in the reference are omitted. For ex

subroutine zee(a, b, c)

 implicit none

 real, intent(in), optional :: a, c

 real, intent(in out) :: b

 ...

end subroutine zee

In the above subroutine, a and c are optional arguments. In the following calls, various co
binations of optional arguments are omitted:

call zee(b=3.0) ! a and c omitted, keyword necessary

call zee(2.0, 3.0) ! c omitted

call zee(b=3.0, c=8.5) ! a omitted, keywords necessary

It is usually necessary in a procedure body to know whether or not an optional argume
been provided. The PRESENT intrinsic function takes as an argument the name of a
optional argument and returns true if the argument is present and false otherwise. A d
argument or procedure that is not present must not be referenced except as an argum
the PRESENT function or as an optional argument in a procedure reference.

Note that for a procedure to have optional arguments an explicit interface must be pre
(see “Procedure Interfaces” on page 49). Many of the Fortran intrinsic procedures have
optional arguments.

Alternate Returns (obsolescent)
A procedure can be made to return to a labeled statement in the calling subprogram us
alternate return. The syntax for an alternate return dummy argument is

*

The syntax for an alternate return actual argument is

* label

Where:
label is a labelled executable statement in the calling subprogram.

An argument to the RETURN statement is used in the called subprogram to indicate w
alternate return in the dummy argument list to take. For example,
48 Lahey Fortran 90 Language Reference

Procedure Interfaces

d sub-
nt.

 state-

ortran
he pro-
her the
ction,
ction
plicit,
 inter-
e

of the
...

call zee(a,b,*200,c,*250)

...

subroutine zee(a, b, *, c, *)

 ...

 return 2 ! returns to label 250 in calling procedure

 ...

 return 1 ! returns to label 200 in calling procedure

 return ! normal return

Dummy Procedures
A dummy argument can be the name of a procedure that is to be referenced in the calle
program or is to appear in an interface block or in an EXTERNAL or INTRINSIC stateme
The corresponding actual argument must not be the name of an internal procedure or
ment function.

Procedure Interfaces
A procedure interface is all the characteristics of a procedure that are of interest to the F
processor when the procedure is invoked. These characteristics include the name of t
cedure, the number, order, type parameters, shape, and intent of the arguments; whet
arguments are optional, and whether they are pointers; and, if the reference is to a fun
the type, type parameters, and rank of the result, and whether it is a pointer. If the fun
result is not a pointer, its shape is an important characteristic. The interface can be ex
in which case the Fortran processor has access to all characteristics of the procedure
face, or implicit, in which case the Fortran processor must make assumptions about th
interface.

Explicit Interfaces
It is desirable, to avoid errors, to create explicit interfaces whenever possible. In each
following cases, an explicit interface is mandatory:

If a reference to a procedure appears
• with a keyword argument,
• as a defined assignment,
• in an expression as a defined operator, or
• as a reference by its generic name;

or if the procedure has
• an optional dummy argument,
• an array-valued result,
• a dummy argument that is an assumed-shape array, a pointer, or a target,
Lahey Fortran 90 Language Reference 49

Chapter 1 Elements of Fortran

 pro-
• a CHARACTER result whose length type parameter value is neither assumed nor
constant, or

• a result that is a pointer.

An interface is always explicit for intrinsic procedures, internal procedures, and module
cedures. A statement function’s interface is always implicit. In other cases, explicit
interfaces can be established using an interface block:

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmt is an INTERFACE statement.

interface-body is
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

module-procedure-stmt is a MODULE PROCEDURE statement.

end-interface-stmt is an END INTERFACE statement.

function-stmt is a FUNCTION statement.

subroutine-stmt is a SUBROUTINE statement.

specification-part is the specification part of the procedure.

end-stmt is an END statement.

Example:
interface
 subroutine x(a, b, c)
 implicit none
 real, intent(in), dimension (2,8) :: a
 real, intent(out), dimension (2,8) :: b, c
 end subroutine x
 function y(a, b)
 implicit none
 logical, intent (in) :: a, b
 end function y
end interface
50 Lahey Fortran 90 Language Reference

Procedure Interfaces

ed at

 this
ures.

ata
In this example, explicit interfaces are provided for the procedures x and y . Any errors in
referencing these procedures in the scoping unit of the interface block will be diagnos
compile time.

Generic Interfaces
An INTERFACE statement with a generic-name (see “INTERFACE Statement” on page
151) specifies a generic interface for each of the procedures in the interface block. In
way external generic procedures can be created, analogous to intrinsic generic proced

Example:
interface swap ! generic swap routine

 subroutine real_swap(x, y)
 implicit none
 real, intent (in out) :: x, y

 end subroutine real_swap
 subroutine int_swap(x, y)

 implicit none
 integer, intent (in out) :: x, y
 end subroutine int_swap

end interface

Here the generic procedure swap can be used with both the REAL and INTEGER types.

Defined Operations
Operators can be extended and new operators created for user-defined and intrinsic d
types. This is done using interface blocks with INTERFACE OPERATOR (see “INTER-
FACE Statement” on page 151).

A defined operation has the form

operator operand

for a defined unary operation, and

operand operator operand

for a defined binary operation, where operator is one of the intrinsic operators or a user-
defined operator of the form

.operator-name.

where .operator-name. consists of one to 31 letters.

For example, either

a .intersection. b

or

a * b
Lahey Fortran 90 Language Reference 51

Chapter 1 Elements of Fortran

t look

ic oper-
ary
d oper-

. For

a
 or
erface
ed,
 argu-
ied in

o

 sub-
econd
d
might be used to indicate the intersection of two sets. The generic interface block migh
like

interface operator (.intersection.)

 function set_intersection (a, b)

 implicit none

 type (set), intent (in) :: a, b, set_intersection

 end function set_intersection

end interface

for the first example, and

interface operator (*)

 function set_intersection (a, b)

 implicit none

 type (set), intent (in) :: a, b, set intersection

 end function set_intersection

end interface

for the second example. The function set_intersection would then contain the code to
determine the intersection of a and b.

The precedence of a defined operator is the same as that of the corresponding intrins
ator if an intrinsic operator is being extended. If a user-defined operator is used, a un
defined operation has higher precedence than any other operation, and a binary define
ation has a lower precedence than any other operation.

An intrinsic operation (such as addition) cannot be redefined for valid intrinsic operands
example, it is illegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of
defined unary operator, or two arguments, for a defined binary operator. The operand
operands in a defined operation become the arguments to a function specified in the int
block, depending on their type, kind, and rank. If a defined binary operation is perform
the left operand corresponds to the first argument and the right operand to the second
ment. Both unary and binary defined operations for a particular operator may be specif
the same interface block.

Defined Assignment
The assignment operator may be extended using an interface block with INTERFACE
ASSIGNMENT (see “INTERFACE Statement” on page 151). The mechanism is similar t
that used to resolve a defined binary operation (see “Defined Operations” on page 51), with
the variable on the left side of the assignment corresponding to the first argument of a
routine in the interface block and the data object on the right side corresponding to the s
argument. The first argument must be INTENT (OUT) or INTENT (IN OUT); the secon
argument must be INTENT (IN).
52 Lahey Fortran 90 Language Reference

Program Units

ray.

 com-

pro-
ment
Example:
interface assignment (=) ! use = for integer to
 ! logical array
 subroutine integer_to_logical_array (b, n)
 implicit none
 logical, intent (out) :: b(:)
 integer, intent (in) :: n
 end subroutine integer_to_logical_array
end interface

Here the assignment operator is extended to convert INTEGER data to a LOGICAL ar

Program Units
Program units are the smallest elements of a Fortran program that may be separately
piled. There are five kinds of program units:

• Main Program

• External Function Subprogram

• External Subroutine Subprogram

• Block Data Program Unit

• Module Program Unit

External Functions and Subroutines are described in “Functions” on page 43 and “Intrinsic
Procedures” on page 42.

Main Pro gram
Execution of a Fortran program begins with the first executable statement in the main
gram and ends with a STOP statement anywhere in the program or with the END state
of the main program.

The form of a main program is

[program-stmt]
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-stmt

Where:
program-stmt is a PROGRAM statement.

use-stmts is one or more USE statements.
Lahey Fortran 90 Language Reference 53

Chapter 1 Elements of Fortran

on
 data

s.

 than
or
tain
rences
ver the
al

t

s

nits in
specification-part is one or more specification statements or interface blocks.

execution-part is one or more executable statements, other than RETURN or ENTRY
statements.

internal-subprogram is one or more internal procedures.

end-stmt is an END statement.

Block Data Program Units
A block data program unit provides initial values for data in one or more named comm
blocks. Only specification statements may appear in a block data program unit. A block
program unit may be referenced only in EXTERNAL statements in other program unit

The form of a block data program unit is

block-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmt is a BLOCK DATA statement.

specification-part is one or more specification statements, other than ALLOCATABLE,
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmt is an END statement.

Module Program Units
Module program units provide a means of packaging anything that is required by more
one scoping unit (a scoping unit is a program unit, subprogram, derived type definition,
procedure interface body, excluding any scoping units it contains). Modules may con
type specifications, interface blocks, executable code in module subprograms, and refe
to other modules. The names in a module can be specified PUBLIC (accessible where
module is used) or PRIVATE (accessible only in the scope of the module itself). Typic
uses of modules include

• declaration and initialization of data to be used in more than one subprogram withou
using common blocks.

• specification of explicit interfaces for procedures.

• definition of derived types and creation of reusable abstract data types (derived type
and the procedures that operate on them).

In Lahey Fortran, any module program units must appear before any other program u
a source file.
54 Lahey Fortran 90 Language Reference

Module Program Units

The form of a module program unit is

module-stmt
[use-stmts]
[specification-part]
[module-subprogram-part]
end-stmt

Where:
module-stmt is a MODULE statement.

use-stmts is one or more USE statements.

specification-part is one or more interface blocks or specification statements other than
OPTIONAL or INTENT.

module-subprogram part is CONTAINS, followed by one or more module procedures.

end-stmt is an END statement.

Example:
module example

 implicit none

 integer, dimension(2,2) :: bar1=1, bar2=2

 type phone_number !derived type definition
 integer :: area_code,number

 end type phone_number

 interface !explicit interfaces

 function test(sample,result)
 implicit none

 real :: test

 integer, intent(in) :: sample,result

 end function test

 function count(total)

 implicit none
 integer :: count

 real,intent(in) :: total

 end function count

 end interface

 interface swap !generic interface

 module procedure swap_reals,swap_integers

 end interface

 contains

 function swap_reals !module procedure

 ...

 end function swap_reals
Lahey Fortran 90 Language Reference 55

Chapter 1 Elements of Fortran

ey are
 host
odule

.

t via

hat
ty:

 cur-

 used
re its

. That
ntify

e may
e than
 function swap_integers !module procedure

 ...

 end function swap_integers

end module example

Module Procedures
Module procedures have the same rules and organization as external procedures. Th
analogous to internal procedures, however, in that they have access to the data of the
module. Only program units that use the host module have access to the module’s m
procedures. Procedures may be made local to the module by specifying the PRIVATE
attribute in a PRIVATE statement or in a type declaration statement within the module

Using Modules
Information contained in a module may be made available within another program uni
the USE statement. For example,

use set_module

would give the current scoping unit access to the names in module set_module . If a name
in set_module conflicts with a name in the current scoping unit, an error occurs only if t
name is referenced. To avoid such conflicts, the USE statement has an aliasing facili

use set_module, a => b

Here the module entity b would be known as a in the current scoping unit.

Another way of avoiding name conflicts, if the module entity name is not needed in the
rent scoping unit, is with the ONLY form of the USE statement:

use set_module, only : c, d

Here, only the names c and d are accessible to the current scoping unit.

Forward references to modules are not allowed in Lahey Fortran. That is, if a module is
in the same source file in which it resides, the module program unit must appear befo
use.

Scope
Names of program units, common blocks, and external procedures have global scope
is, they may be referenced from anywhere in the program. A global name must not ide
more than one global entity in a program.

Names of statement function dummy arguments have statement scope. The same nam
be used for a different entity outside the statement, and the name must not identify mor
one entity within the statement.
56 Lahey Fortran 90 Language Reference

Data Sharing

pe of
lied-
.

cept
s

ace it
d
Names of implied-do variables in DATA statements and array constructors have a sco
the implied-do list. The same name may be used for a different entity outside the imp
DO list, and the name must not identify more than one entity within the implied-DO list

Other names have local scope. The local scope, called a scoping unit, is one of the following:

• a derived-type definition, excluding the name of the derived type.

• an interface body, excluding any derived-type definitions or interface bodies within
it.

• a program unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, ex
when the same name is declared in the inner, contained scoping unit. This is known ahost
association. For example,

subroutine external ()

 implicit none

 integer :: a, b

 ...

contains

 subroutine internal ()

 implicit none

 integer :: a

 ...

 a=b ! a is the local a;

 ! b is available by host association

 ...

 end subroutine internal

 ...

end subroutine external

In the statement a=b , above, a is the a declared in subroutine internal , not the a declared
in subroutine external . b is available from external by host association.

Data Sharing
To make an entity available to more than one program unit, pass it as an argument, pl
in a common block (see “COMMON Statement” on page 89), or declare it in a module an
use the module (see “Module Program Units” on page 54).
Lahey Fortran 90 Language Reference 57

Chapter 1 Elements of Fortran
58 Lahey Fortran 90 Language Reference

2 Alphabetical
Reference
ABS Function

Description

Absolute value.

Syntax

ABS (a)

Arguments

a must be of type REAL, INTEGER, or COMPLEX.

Result

If a is of type INTEGER or REAL, the result is of the same type as a and has the value |a|; if

a is COMPLEX with value (x,y), the result is a REAL representation of .

Example

x = abs(-4.2) ! x is assigned the value 4.2

ACHAR Function

Description

Character in a specified position of the ASCII collating sequence.

x
2

y
2+
Lahey Fortran 90 Language Reference 59

Chapter 2 Alphabetical Reference
Syntax
ACHAR (i)

Arguments
i must be of type INTEGER.

Result
A CHARACTER of length one that is the character in position (i) of the ASCII collating
sequence.

Example
c = achar(65) ! c is assigned the value 'A'

ACOS Function

Description
Arccosine.

Syntax
ACOS (x)

Arguments
x must be of type REAL and must be within the range .

Result
A REAL representation, expressed in radians, of the arccosine of x.

Example
r = acos(.5) ! r is assigned the value 1.04720

ADJUSTL Function

Description
Adjust to the left, removing leading blanks and inserting trailing blanks.

1– x 1≤ ≤
60 Lahey Fortran 90 Language Reference

ADJUSTR Function

ks has

ks has
Syntax
ADJUSTL (string)

Arguments
string must be of type CHARACTER.

Result
A CHARACTER of the same length and kind as string. Its value is the same as that of string
except that any leading blanks have been deleted and the same number of trailing blan
been inserted.

Example
adjusted = adjustl(' string')
 ! adjusted is assigned the value 'string '

ADJUSTR Function

Description
Adjust to the right, removing trailing blanks and inserting leading blanks.

Syntax
ADJUSTR (string)

Arguments
string must be of type CHARACTER.

Result
A CHARACTER of the same length and kind as string. Its value is the same as that of string
except that any trailing blanks have been deleted and the same number of leading blan
been inserted.

Example
adjusted = adjustr('string ')
 ! adjusted is assigned the value ' string'

AIMAG Function

Description
Imaginary part of a complex number.
Lahey Fortran 90 Language Reference 61

Chapter 2 Alphabetical Reference
Syntax
AIMAG (z)

Arguments
z must be of type COMPLEX.

Result
A REAL with the same kind as z. If z has the value (x,y) then the result has the value y.

Example
r = aimag(-4.2,5.1) ! r is assigned the value 5.1

AINT Function

Description
Truncation to a whole number.

Syntax
AINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
A REAL value with the kind specified by kind, if present; otherwise with the kind of a. The
result is equal to the value of a without its fractional part.

Example
r = aint(-7.32,2) ! r is assigned the value -7.0
 ! with kind 2

ALL Function

Description
Determine whether all values in a mask are true along a given dimension.
62 Lahey Fortran 90 Language Reference

ALLOCATABLE Statement

m-

ble
Syntax
ALL (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , where n is
the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type LOGICAL with the same kind as MASK. Its value and rank are co
puted as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result has the value
true if all elements of mask are true.

2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result has the value true for each correspond-
ing vector in mask that evaluates to true for all elements in that vector.

Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: c
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
 ! represents |1 3 5|
 |2 4 6|
b = reshape((/1,2,3,5,6,4/), (/2,3/))
 ! represents |1 3 6|
 |2 5 4|
e = all(a==b) ! e is assigned the value false
d = all(a==b, 1)! d is assigned the value true,false,
 ! false
c = all(a==b, 2)! c is assigned the value false,false

ALLOCATABLE Statement

Description
The ALLOCATABLE statement declares allocatable arrays. The shape of an allocata
array is determined when space is allocated for it by an ALLOCATE statement.

1 x n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey Fortran 90 Language Reference 63

Chapter 2 Alphabetical Reference

pec-

sion

ET

 allo-
Syntax
ALLOCATABLE [::] array-name [(deferred-shape)] [, array-name (deferred-
shape)] ...

Where:
array-name is the name of an array.

deferred-shape is : [, :] ... where the number of colons is equal to the rank of array-name.

Remarks
The array-name must not be a dummy argument or a function result.

If the DIMENSION of array-name is specified elsewhere in the scoping unit, it must be s
ified as a deferred-shape.

Example
integer :: a, b, c(:,:,:) ! rank of c is specified
dimension b(:,:) ! rank of b is specified
allocatable a(:), b, c ! rank of a is specified,
 ! a,b, and c are allocatable
allocate (a(2), b(3,-1:1), c(10,10,10))
 ! shapes specified,
 ! space allocated
 ...
deallocate (a,b,c) ! space deallocated

ALLOCATE Statement

Description
For an allocatable array the ALLOCATE statement defines the bounds of each dimen
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly has the TARG
attribute and associates the pointer with that target.

Syntax
ALLOCATE (allocation-list [, STAT = stat-variable])

Where:
allocation-list is a comma-separated list of pointers or allocatable arrays and, for each
catable array, a list of dimension bounds, ([lower-bound :] upper-bound [, ...])

upper bound and lower-bound are scalar INTEGER expressions.

stat-variable is a scalar INTEGER variable.
64 Lahey Fortran 90 Language Reference

ALLOCATE Statement

 con-

t

Remarks
If the optional STAT= is present and the ALLOCATE statement succeeds, stat-variable is
assigned the value zero. If STAT= is present and the ALLOCATE statement fails, stat-vari-
able is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of an ALLOCATE statement that does not
tain the STAT= specifier, execution of the executable program is terminated.

For an allocatable array:
1. Subsequent redefinition of lower-bound or upper-bound does not affect the array

bounds.

2. If lower-bound is omitted, the default value is one.

3. If upper-bound is less than lower-bound, the extent of that dimension is zero and the
array has zero size.

4. The allocatable array can be of type CHARACTER with zero length.

5. Allocating a currently allocated allocatable array causes an error condition in the
ALLOCATE statement.

6. The ALLOCATED intrinsic function can be used to determine whether an allocat-
able array is currently allocated.

For a pointer:
1. If a pointer that is currently associated with a target is allocated, a new pointer targe

is created and the pointer is associated with that target.

2. The ASSOCIATED intrinsic function can be used to determine whether a pointer is
currently associated with a target.

3. A function whose result is a pointer must cause the pointer to be associated or
dissociated.

Example
logical :: l,m

integer, pointer :: i

integer, allocatable, dimension (:,:) :: j

l = associated (i) ! l is assigned the value false

m = allocated (j) ! m is assigned the value false

allocate (j(4,-2:3))! shape of J defined,

 ! space allocated

allocate (i) ! i points to unnamed target

l = associated (i) ! l is assigned the value true

m = allocated (j) ! m is assigned the value true

 ...

deallocate (i,j) ! space deallocated
Lahey Fortran 90 Language Reference 65

Chapter 2 Alphabetical Reference

on

ALLOCATED Function

Description
Indicate whether an allocatable array has been allocated.

Syntax
ALLOCATED (array)

Arguments
array must be an allocatable array.

Result
The result is a scalar of default LOGICAL type. It has the value true if array is currently
allocated and false if array is not currently allocated. The result is undefined if the allocati
status of array is undefined.

Example
integer, allocatable :: i(:,:)

allocate (i(2,3))

l = allocated (i) ! l is assigned the value true

ANINT Function

Description
REAL representation of the nearest whole number.

Syntax
ANINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type REAL. If kind is present, the kind is that specified by kind; otherwise,
it is the kind of a. If a > 0, the result has the value INT(a + 0.5); if , the result has the
value INT(a - 0.5).

a 0≤
66 Lahey Fortran 90 Language Reference

ANY Function

uted
Example
x = anint (7.73) ! x is assigned the value 8.0

ANY Function

Description:
Determine whether any values are true in a mask along a given dimension.

Syntax
ANY (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , where n is
the rank of mask. The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type LOGICAL with the same kind as mask. Its value and rank are comp
as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result has the value
true if any elements of mask are true.

2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result has the value true for each correspond-
ing vector in mask that evaluates to true for any element in that vector.

1 x n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey Fortran 90 Language Reference 67

Chapter 2 Alphabetical Reference

y a
 label
er than

ping
Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: c
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
 ! represents |1 3 5|
 |2 4 6|
b = reshape((/1,2,3,5,6,4/), (/2,3/))
 ! represents |1 3 6|
 |2 5 4|
e = any(a==b) ! e is assigned the value true
d = any(a==b, 1)! d is assigned the value true, true,
 ! false
c = any(a==b, 2)! c is assigned the value true, true

Arithmetic IF Statement (obsolescent)

Description
Execution of an arithmetic IF statement causes evaluation of an expression followed b
transfer of control. The branch target statement identified by the first, second, or third
is executed next if the value of the expression is less than zero, equal to zero, or great
zero, respectively.

Syntax
IF (expr) label, label, label

Where:
expr is a scalar numeric expression.

label is a statement label.

Remarks
Each label must be the label of a branch target statement that appears in the same sco
unit as the arithmetic IF statement.

expr must not be of type COMPLEX.

The same label can appear more than once in one arithmetic IF statement.

Example
if (b) 10,20,30 ! goto 10 if b<0
 ! goto 20 if b=0
 ! goto 30 if b>0
68 Lahey Fortran 90 Language Reference

ASIN Function

nt indi-
he
.

ASIN Function

Description
Arcsine.

Syntax
ASIN (x)

Arguments
x must be of type REAL and must be in the range .

Result
The result has the same kind as x. Its value is a REAL representation of the arcsine of x,
expressed in radians.

Example
r = asin(.5) ! r is assigned the value 0.523599

Assigned GOTO Statement (obsolescent)

Description
The assigned GOTO statement causes a transfer of control to the branch target stateme
cated by a variable that was assigned a statement label in an ASSIGN statement. If t
parenthesized list of labels is present, the variable must be one of the labels in the list

Syntax
GOTO assign-variable [[,] (labels)]

Where:
assign-variable is a scalar INTEGER variable that was assigned a label in an ASSIGN
statement.

labels is a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statement, assign-variable must be defined with the
value of a label of a branch target statement in the same scoping unit.

Example
 assign 100 to i
 goto i
100 continue

1– x 1≤ ≤
Lahey Fortran 90 Language Reference 69

Chapter 2 Alphabetical Reference

truc-

ent in

on the
ASSIGN Statement (obsolescent)

Description
Assigns a statement label to an INTEGER variable.

Syntax
ASSIGN label TO assign-variable

Where:
label is a statement label.

assign-variable is a scalar INTEGER variable.

Remarks
assign-variable must be a named variable of default INTEGER kind. It must not be a s
ture component or an array element.

label must be the target of a branch target statement or the label of a FORMAT statem
the same scoping unit.

When defined with an INTEGER value, assign-variable must not be used as a label.

When assigned a label, assign-variable must not be used as anything except a label.

Example
 assign 100 to i

 goto i

100 continue

Assignment Statement

Description
Assigns the value of the expression on the right side of the equal sign to the variable
left side of the equal sign.

Syntax
variable = expression

Where:
variable is a scalar variable, an array, or a variable of derived type.

expression is an expression whose result is conformable with variable.
70 Lahey Fortran 90 Language Reference

Assignment Statement

 be
ed a

value
Remarks
A numeric variable can only be assigned a numeric; a CHARACTER variable can only
assigned a CHARACTER with the same kind; a LOGICAL variable can only be assign
LOGICAL; and a derived type variable can only be assigned the same derived type.

Evaluation of expression takes place before the assignment. If the kind of expression is dif-
ferent from that of variable, the result of expression undergoes an implicit type conversion
to the kind and type of variable. Precision can be lost.

If expression is array-valued, then variable must be an array. If expression is scalar and vari-
able is an array, all elements of variable are assigned the value of expression.

If variable is a pointer, it must be associated with a target. The target is assigned the
of expression.

If variable and expression are of CHARACTER type with different lengths, expression is
truncated if longer than variable, and padded on the right with blanks if expression is shorter
than variable.

Example
real :: a=1.5, b(10)

integer :: i=2, j(10)

character (len = 5) :: string5 = "abcde"

character (len = 7) :: string7 = "cdefghi"

type person

 integer :: age

 character (len = 25) :: name

end type person

type (person) :: person1, person2

i = a ! i is assigned int(a)

i = j ! error

j = i ! each element in j assigned

 ! the value 2

j = b ! each element in j assigned

 ! corresponding value in b

 ! converted to integer

string5 = string7 ! string5 is assigned "cdefg"

string7 = string5 ! string7 is assigned "abcde "

person1 % age = 5

person1 % name = "john"

person2 = person1 ! each component of person2 is

 ! assigned the value of the

 ! corresponding component

 ! of person1
Lahey Fortran 90 Language Reference 71

Chapter 2 Alphabetical Reference

ot be
ASSOCIATED Function

Description
Indicate whether a pointer is associated with a target.

Syntax
ASSOCIATED (pointer, target)

Required Arguments
pointer must be a pointer whose pointer association status is not undefined.

Optional Arguments
target must be a pointer or target. If it is a pointer, its pointer association status must n
undefined.

Result
The result is of type default LOGICAL. If target is absent, the result is true if pointer is cur-
rently associated with a target and false if it is not. If target is present and is a target, the
result is true if pointer is currently associated with target and false if it is not. If target is
present and is a pointer, the result is true if both pointer and target are currently associated
with the same target and false if they are not.

Example
real, pointer :: a, b, e

real, target :: c, f

logical :: l

a => c

b => c

e => f

l = associated (a) ! l is assigned the value true

l = associated (a, c) ! l is assigned the value true

l = associated (a, b) ! l is assigned the value true

l = associated (a, f) ! l is assigned the value false

l = associated (a, e) ! l is assigned the value false

ATAN Function

Description
Arctangent.
72 Lahey Fortran 90 Language Reference

ATAN2 Function

ns,

rrent
Syntax
ATAN (x)

Arguments
x must be of type REAL.

Result
The result is a REAL representation of the arctangent of x, expressed in radians, that lies
within the range .

Example
a = atan(.5) ! a is assigned the value 0.463648

ATAN2 Function

Description
Arctangent of y/x (principal value of the argument of the complex number (x,y)).

Syntax
ATAN2 (y, x)

Arguments
y must be of type REAL.

x must be of the same kind as y. If y has the value zero, x must not have the value zero.

Result
The result is of the same kind as x. Its value is a REAL representation, expressed in radia
of the argument of the complex number (x,y).

Example
x = atan2 (1, 1) ! x is assigned the value 0.785398

BACKSPACE Statement

Description
The BACKSPACE statement positions the file before the current record if there is a cu
record, otherwise before the preceding record.

π 2⁄– x π 2⁄≤ ≤
Lahey Fortran 90 Language Reference 73

Chapter 2 Alphabetical Reference

ber

on of

n

d.

ord.

s
Syntax
BACKSPACE unit-number

or

BACKSPACE (position-spec-list)

Where:

unit-number is a scalar INTEGER expression corresponding to the input/output unit num
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during executi
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error conditio
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
If there is no current record and no preceding record, the file position is left unchange

If the preceding record is an endfile record, the file is positioned before the endfile rec

If the BACKSPACE statement causes the implicit writing of an endfile record, the file i
positioned before the record that precedes the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records using list-directed or namelist formatting is prohibited.

Example
backspace 10 ! file connected to unit 10 backspaced

backspace (10, err = 100)

 ! file connected to unit 10 backspaced

 ! on error goto label 100

BIT_SIZE Function

Description
Size, in bits, of a data object of type INTEGER.
74 Lahey Fortran 90 Language Reference

BLOCK DATA Statement
Syntax
BIT_SIZE (i)

Arguments
i must be of type INTEGER.

Result
The result has the same kind as i. Its value is equal to the number of bits in i.

Example
integer :: i, m

integer, dimension (2) :: j, n

m = bit_size (i) ! m is assigned the value 32

n = bit_size (j) ! n is assigned the value [32 32]

BLOCK DATA Statement

Description
The BLOCK DATA statement begins a block data program unit.

Syntax
BLOCK DATA [block-data-name]

Where:

block-data-name is an optional name given to the block data program unit.

Example
block data mydata

 common /d/ a, b, c

 data a/1.0/, b/2.0/, c/3.0/

end block data mydata

BREAK Subroutine

Description
Handle break interrupts during execution of the program.
Lahey Fortran 90 Language Reference 75

Chapter 2 Alphabetical Reference

ock.

ror

some
or
Syntax
BREAK (lvar)

Optional Arguments
lvar must be of type LOGICAL. It must have the SAVE attribute or be in a common bl

Remarks
If lvar is absent, the program will terminate after a <Ctrl-Break> or <Ctrl-C> is typed at
the keyboard. All file buffers will be flushed, and the program will terminate with an er
status. This is the system default action.

If lvar is present, the program will not terminate after a <Ctrl-Break> or <Ctrl-C> , but
lvar will be assigned the value true. If a break is received during console input/output,
data may be lost and an error may result. The error may be trapped using the ERR=
IOSTAT= specifier in the input/output statement.

To ignore break interrupts in the program use the NBREAK subroutine (see “NBREAK Sub-
routine” beginning on page 177).

Example
call break () ! break interrupt terminates program

call break (lvar) ! break interrupt assigns true to lvar

BTEST Function

Description
Test a bit of an INTEGER data object.

Syntax
BTEST (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than BIT_SIZE (i). Bits
are numbered from least significant to most significant, beginning with 0.

Result
The result is of type default LOGICAL. It has the value true if bit pos has the value 1 and
false if bit pos has the value zero.
76 Lahey Fortran 90 Language Reference

CALL Statement

 name
my

it.

L

.

ngth
Example
l = btest (1, 0) ! l is assigned the value true
l = btest (4, 1) ! l is assigned the value false
l = btest (32, 5) ! l is assigned the value true

CALL Statement

Description
The CALL statement invokes a subroutine and passes to it a list of arguments.

Syntax
CALL subroutine-name [([actual-arg-list])]

Where:
subroutine-name is the name of a subroutine.

actual-arg-list is [[keyword =] actual-arg] [, ...]

keyword is the name of a dummy argument to subroutine-name.

actual-arg is an expression, a variable, a procedure name, or an alternate-return-spec.

alternate-return-spec is * label

label is a statement label.

Remarks
General:
actual-arg-list defines the correspondence between the actual-args supplied and the dummy
arguments of the subroutine.

If keyword = is present, the actual argument is passed to the dummy argument whose
is the same as keyword. If a keyword = is absent, the actual argument is passed to the dum
argument in the corresponding position in the dummy argument list.

keyword = must appear with an actual-arg unless no previous keyword = has appeared in the
actual-arg-list.

keyword = can only appear if the interface of the procedure is explicit in the scoping un

An actual-arg can be omitted if the corresponding dummy argument has the OPTIONA
attribute. Each actual-arg must be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument

If the dummy argument is an assumed-shape array of type default CHARACTER, its le
must agree with that of the corresponding actual argument.
Lahey Fortran 90 Language Reference 77

Chapter 2 Alphabetical Reference

 or

s, type
ument
e sub-

ument.

 asso-
ny

ss the
ay, or a

he spe-

 is

nt is
st not
dure.

utine,

The total length of a dummy argument of type default CHARACTER must be less than
equal to that of the corresponding actual argument.

If the dummy argument is a pointer, the actual argument must be a pointer and the type
parameters, and ranks must agree. At the invocation of the subroutine, the dummy arg
pointer receives the pointer association status of the actual argument. At the end of th
routine, the actual argument receives the pointer association status of the dummy arg

If the actual argument has the TARGET attribute, any pointers associated with it remain
ciated with the actual argument. If the dummy argument has the TARGET attribute, a
pointers associated with it become undefined when the subroutine completes.

The ranks of dummy arguments and corresponding actual arguments must agree unle
actual argument is an element of an array that is not an assumed-shape or pointer arr
substring of such an element.

Procedures as arguments:
If a dummy argument is a dummy procedure, the associated actual argument must be t
cific name of an external, module, dummy, or intrinsic procedure.

The intrinsic functions AMAX0, AMAX1, AMIN0, AMIN1, CHAR, DMAX1, DMIN1,
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE, LLT, MAX0, MAX1, MIN0, MIN1,
REAL, and SNGL are not permitted as actual arguments.

If a generic intrinsic function name is also a specific name, only the specific procedure
associated with the dummy argument.

If a dummy procedure has an implicit interface either the name of the dummy argume
explicitly typed or the procedure is referenced as a function. The dummy procedure mu
be called as a subroutine and the actual argument must be a function or dummy proce

If a dummy procedure has an implicit interface and the procedure is called as a subro
the actual argument must be a subroutine or a dummy procedure.

Alternate returns as arguments:
If a dummy argument is an asterisk, the corresponding actual argument must be an alternate-
return-spec. The label in the alternate-return-spec must identify an executable construct in
the scoping unit containing the procedure reference.
78 Lahey Fortran 90 Language Reference

CARG Function

ual

OG-
Example
...
call alpha (x, y)
...
subroutine alpha (a, b)
 impicit none
 real, intent(in) :: a
 real, intent(out) :: b
 ...
end subroutine alpha

CARG Function

Description
Pass item to a procedure as a C data type by value. CARG can only be used as an act
argument.

Syntax
CARG (item)

Arguments
item can be a named data object of any intrinsic type except COMPLEX and four-byte L
ICAL. It is the data object for which to return an address. item is an INTENT(IN) argument.
Lahey Fortran 90 Language Reference 79

Chapter 2 Alphabetical Reference
Result
The result is the value of item. Its C data type is as follows:

Example
i = my_c_function(carg(a)) ! a is passed by value

Table 8: CARG result types

Fortran Type Fortran Kind C type

INTEGER 1 signed char

INTEGER 2 signed short int

INTEGER 4 signed long int

REAL 4 double

REAL 8 double

COMPLEX 4

must not be passed by value; if
passed by reference (without
CARG) it is a pointer to a structure
of the form:

 struct complex {
 float real_part;
 float imaginary_part;};

COMPLEX 8

must not be passed by value; if
passed by reference (without
CARG) it is a pointer to a structure
of the form:

 struct dp_complex {
 double real_part;
 double imaginary_part;};

LOGICAL 1 unsigned char

LOGICAL 4
must not be passed by value or by
reference

CHARACTER 1 char *
80 Lahey Fortran 90 Language Reference

CASE Construct

 value

 (see
he

one
or
CASE Construct

Description
The CASE construct is used to select between blocks of executable code based on the
of an expression.

Syntax
[construct-name :] SELECT CASE (case-expr)
CASE (case-selector [, case-selector] ...) [construct-name]

block
...

[CASE DEFAULT [construct-name]]
block
...

END SELECT [construct-name]

Where:
construct-name is an optional name for the CASE construct

case-expr is a scalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selector is case-value
or : case-value
or case-value :
or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
Execution of a SELECT CASE statement causes the case expression to be evaluated
SELECT CASE). The resulting value is called the case index. If the case index is in t
range specified with a CASE statement’s case-selector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;

: case-value means less than or equal to case-value;

case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, and less than
or equal to the right case-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches n
of the case-values in the case construct. CASE DEFAULT can appear before, among,
after other CASE statements, or can be omitted.
Lahey Fortran 90 Language Reference 81

Chapter 2 Alphabetical Reference

ASE
t

 (see
he
 state-

one
Each case-value must be of the same kind as the case construct’s case index.

The ranges of case-values in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.

If the SELECT CASE statement is identified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT C
statement is not identified by a construct-name, the corresponding END SELECT statemen
must not be identified by a construct-name. If a CASE statement is identified by a construct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
select case (i)

case (:-2)

 print*, "i is less than or equal to -2"

case (0)

 print*, "i is equal to 0"

case (1:97)

 print*, "i is in the range 1 to 97, inclusive"

case default

 print*, "i is either -1 or greater than 97"

end select

CASE Statement

Description
Execution of a SELECT CASE statement causes the case expression to be evaluated
SELECT CASE). The resulting value is called the case index. If the case index is in t
range specified with a CASE statement's case-selector, the block following the CASE
ment, if any, is executed. The case-selector is evaluated as follows:

case-value means equal to case-value;

: case-value means less than or equal to case-value;

case-value : means greater than or equal to case-value; and

case-value : case-value means greater than or equal to the left case-value, and less than
or equal to the right case-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches n
of the case-values in the case construct.
82 Lahey Fortran 90 Language Reference

CEILING Function
Syntax
CASE (case-selector [, case-selector] ...) [construct-name]

or

CASE DEFAULT [construct-name]

Where:

case-selector is case-value

or : case-value

or case-value :

or case-value : case-value

case-value is a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

construct-name is an optional name assigned to the construct.

Remarks
Each case-value must be of the same kind as the case construct's case index.

The ranges of case-values in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.

If a CASE statement is identified by a construct-name, the corresponding SELECT CASE
statement must specify the same construct-name.

Example
select case (i)

case (:-2)

 print*, "i is less than or equal to -2"

case (0)

 print*, "i is equal to 0"

case (1:97)

 print*, "i is in the range 1 to 97, inclusive"

case default

 print*, "i is either -1 or greater than 97"

end select

CEILING Function

Description
Smallest INTEGER greater than or equal to a number.
Lahey Fortran 90 Language Reference 83

Chapter 2 Alphabetical Reference

acters
Syntax
CEILING (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is an INTEGER whose value is the smallest integer greater than or equal toa. If
kind is present, the kind is that specified by kind. If kind is absent, the kind is that of the
default REAL type.

Example
i = ceiling (-4.7) ! i is assigned the value -4
i = ceiling (4.7) ! i is assigned the value 5

CHAR Function

Description
Given character in the collating sequence of a given character set.

Syntax
CHAR (i, kind)

Required Arguments
i must be of type INTEGER. It must be positive and not greater than the number of char
in the collating sequence of the character set specified by kind.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is a CHARACTER of length one corresponding to the ith character of the given
character set. If kind is present, the kind is that specified by kind. If kind is absent, the kind
is that of the default CHARACTER type.

Example
c = char(65) ! char is assigned the value 'A'
 ! with ASCII the default character type
84 Lahey Fortran 90 Language Reference

CHARACTER Statement

 pro-

O-

le
CHARACTER Statement

Description
The CHARACTER statement declares entities of type CHARACTER.

Syntax
CHARACTER [char-selector] [, attribute-list ::] entity [, entity] ...

Where:
char-selector is length-selector
or (LEN = type-param, KIND = kind-param)
or (type-param, KIND = kind-param)
or (KIND = kind-param, LEN = type-param,)

length-selector is ([LEN =] type-param)
or * char-length

char-length is (type-param)
or scalar-int-literal-constant

type-param is specification-expr
or *

specification-expr is a scalar INTEGER expression that can be evaluated on entry to the
gram unit.

kind-param is a scalar INTEGER expression that can be evaluated at compile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [* char-length] [= initialization-expr]
or function-name [(array-spec)] [* char-length]

array-spec is an array specification

initialization-expr is a CHARACTER-valued expression that can be evaluated at compi
time

entity-name is the name of a data object being declared

function-name is the name of a function being declared

Remarks
If char-length is not specified, the length is one.

An asterisk can be used for char-length only in the following ways:
Lahey Fortran 90 Language Reference 85

Chapter 2 Alphabetical Reference

e

s

y

tion

.

a pro-
e, an

ith

 spec-

cified

1. If the entity is a dummy argument. The dummy argument assumes the length of th
associated actual argument.

2. To declare a named constant. The length is that of the constant value.

3. In an external function, as the length of the function result. In this case, the function
name must be declared in the calling scoping unit with a length other than *, or acces
such a definition by host or use association. The length of the result variable is
assumed from this definition.

char-length for CHARACTER-valued statement functions and statement function dumm
arguments must be a constant INTEGER expression.

The optional comma following * char-length in a char-selector is permitted only if no double
colon appears in the statement.

The value of kind must specify a character set that is valid for this compiler.

char-length must not include a kind parameter.

The * char-length in entity specifies the length of a single entity and overrides the length
specified in char-selector.

The same attribute must not appear more than once in a CHARACTER statement.

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in blank common, an allocatable array, a pointer, an external nam
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be spe
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.
86 Lahey Fortran 90 Language Reference

CLOSE Statement

cat-

mmy

.

oce-
sion

.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a CHARACTER statement must not have the EXTERNAL or INTRINSIC
attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

An entity must not be given explicitly any attribute more than once in a scoping unit.

If char-length is a non-constant expression, the length is declared at the entry of the pr
dure and is not affected by any redefinition of the variables in the specification expres
during execution of the procedure.

Example
character (len=2) :: x,y,z ! x,y,z of length 2
character(len = *) :: d ! length of dummy d
 ! determined when
 ! procedure invoked

CLOSE Statement

Description
The CLOSE statement terminates the connection of a specified unit to an external file

Syntax
CLOSE (close-spec-list)

Where:
close-spec-list is a comma-separated list of close-specs.

close-spec is [UNIT =] external-file-unit
or IOSTAT = iostat
or ERR = label
or STATUS = status
Lahey Fortran 90 Language Reference 87

Chapter 2 Alphabetical Reference

ror
nd the

s an

ues

external-file-unit is the input/output unit number of an external file.

iostat is a scalar default INTEGER variable. If present, it is assigned the number of the er
message generated at runtime if an error occurs in executing the CLOSE statement a
program is not terminated; if no error occurs it is assigned the value zero.

label is the label of a branch target statement to which the program branches if there i
error in executing the CLOSE statement.

status is a CHARACTER expression that evaluates to either 'KEEP' or 'DELETE'.

Remarks
external-file-unit is required. If UNIT = is omitted, external-file-unit must be the first spec-
ifier in close-spec-list.

A specifier must not appear more than once in a CLOSE statement.

STATUS = 'KEEP' must not be specified for a file whose status prior to execution of a
CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file contin
to exist after a CLOSE statement. This is the default behavior.

If STATUS = 'DELETE' is specified, the file will not exist after execution of the CLOSE
statement.

Example
close (8, status = 'keep') ! unit 8 closed and kept
close (err = 200, unit = 9) ! unit 9 closed; if error
 ! occurs, branch to label
 ! 200

CMPLX Function

Description
Convert to type COMPLEX.

Syntax
CMPLX (x, y, kind)

Required Arguments
x must be of type REAL, INTEGER, or COMPLEX.

Optional Arguments
y must be of type REAL or INTEGER. If x is of type COMPLEX, y must not be present.

kind must be a scalar INTEGER expression that can be evaluated at compile time.
88 Lahey Fortran 90 Language Reference

COMMON Statement

value

stor-
e

the

 objects

ence of
d the

ame
ciation
Result
The result is of type COMPLEX. If kind is present the result is of kind kind; otherwise, it is
of default kind. The value of the result is the complex number whose real part has the
of x, if x is an INTEGER or a REAL; whose real part has the value of the real part of x, if x
is of type COMPLEX; and whose imaginary part has the value of y, if present, and zero
otherwise.

Example
y = cmplx (3.2, 4.7) ! y is assigned (3.2, 4.7)
z = cmplx (3.2) ! z is assigned (3.2, 0.0)

COMMON Statement

Description
The COMMON statement provides a global data facility. It specifies blocks of physical
age, called common blocks, that can be accessed by any scoping unit in an executabl
program.

Syntax
COMMON [/ [common-name] /] common-object-list [[,] / [common-name] /
common-object-list] ...

Where:
common-name is the name of a common block being declared.

common-object-list is a comma-separated list of data objects that are declared to be in
common block.

Remarks
If common-name is present, all data objects in the corresponding common-object-list are
specified to be in the named common block named common-name. If common-name is omit-
ted, all data objects in the first common-object-list are specified to be in blank common.

For each common block, a storage sequence is formed of storage sequences of all data
in the common block, in the order they appear in common-object-lists in the scoping unit. If
any storage sequence is associated by equivalence association with the storage sequ
the common block, the sequence can be extended only by adding storage units beyon
last storage unit.

Within an executable program, the storage sequences of all common blocks with the s
name (or all blank commons) have the same first storage unit. This results in the asso
of objects in different scoping units.

A blank common has the same properties as a named common, except:
Lahey Fortran 90 Language Reference 89

Chapter 2 Alphabetical Reference

-

its

M-

y,

-

e

 rank.

, non-

 non-

OU-

pes

an

com-

t stor-
1. Execution of a RETURN or END statement can cause data objects in a named com
mon to become undefined unless the common block name has been declared in a
SAVE statement.

2. Named common blocks of the same name must be the same size in all scoping un
of a program in which they appear, but blank commons can be of different sizes.

3. A data object in a named common can be initially defined in a DATA or type decla-
ration statement in a block data program unit, but data objects in a blank common
must not be initially defined.

A common block name or blank common can appear multiple times in one or more CO
MON statements in a scoping unit. In such case, the common-object-list is treated as a
continuation of the common-object-list for that common block.

A given data object can appear only once in all common-object-lists in a scoping unit.

A data object in a common-object-list must not be a dummy argument, an allocatable arra
an automatic object, a function name, an entry name, or a result name.

Each bound in an array-valued data object in a common-object-list must be a constant spec
ification expression.

If a data object in a common-object-list is of a derived type, the derived type must have th
sequence attribute.

A pointer must only become associated with pointers of the same type, kind, length, and

Default-type, non-pointer data objects must only become associated with default-type
pointer data objects.

Non-default-type, non-pointer intrinsic data objects must only become associated with
default-type, non-pointer intrinsic data objects.

Default CHARACTER data objects must not become associated with default REAL, D
BLE PRECISION, INTEGER, COMPLEX, DOUBLE COMPLEX, or LOGICAL data
objects.

Derived type data objects in which all components are of default numeric or LOGICAL ty
can become associated with data objects of default numeric or LOGICAL types.

Derived type data objects in which all components are of default CHARACTER type c
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage units to be added before the firs
age unit of the common block.
90 Lahey Fortran 90 Language Reference

COMPLEX Statement

om-

O-

tion
Example
common /first/ a,b,c ! a, b, and c are in named
 ! common first
common d,e,f, /second/, g ! d, e, and f are in blank
 ! common, g is in named
 ! common second
common /first/ h ! h is also in first

COMPLEX Statement

Description
The COMPLEX statement declares entities of type COMPLEX.

Syntax
COMPLEX [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at c
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a COMPLEX statement.

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

= initialization-expr must appear if the statement contains a PARAMETER attribute.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.
Lahey Fortran 90 Language Reference 91

Chapter 2 Alphabetical Reference

,
ram

 intrin-

ith

ec-

ed

cat-

mmy

te

.

= initialization-expr must not appear if entity-name is a dummy argument, a function result
an object in a named common block unless the type declaration is in a block data prog
unit, an object in blank common, an allocatable array, a pointer, an external name, an
sic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a COMPLEX statement must not have the EXTERNAL or INTRINSIC attribu
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
complex :: a, b, c ! a, b, and c are of type complex

complex, dimension (2, 4) :: d

 ! d is a 2 by 4 array of complex

complex :: e = (2.0, 3.14159)

 ! complex e is initialized
92 Lahey Fortran 90 Language Reference

Computed GOTO Statement

ent

 unit.
Computed GOTO Statement

Description
The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

Syntax
GO TO (labels) [,] scalar-int-expr

Where:

labels is a comma-separated list of labels.

scalar-int-expr is a scalar INTEGER expression.

Remarks
Execution of a computed GOTO statement causes evaluation of scalar-int-expr. If this value
is i such that , where n is the number of labels in labels, a transfer of control occurs
so that the next statement executed is the one identified by the ith label in labels. If i is less
than 1 or greater than n, the execution sequence continues as though a CONTINUE statem
were executed.

Each label in labels must be the label of a branch target statement in the current scoping

Example
 goto (10,20,30) i

10 a = a+1 ! if i=1 control transfers here

20 a = a+1 ! if i=2 control transfers here

30 a = a+1 ! if i=3 control transfers here

CONJG Function

Description
Conjugate of a complex number.

Syntax
CONJG (z)

Arguments
z must be of type COMPLEX.

1 i n≤ ≤
Lahey Fortran 90 Language Reference 93

Chapter 2 Alphabetical Reference

gram
Result
The result is of type COMPLEX and of the same kind as z. Its value is the same as that of z
with the imaginary part negated.

Example
x = conjg (2.1, -3.2) ! x is assigned

 ! the value (2.1, 3.2)

CONTAINS Statement

Description
The CONTAINS statement separates the body of a main program, module, or subpro
from any internal or module subprograms it contains.

Syntax
CONTAINS

Remarks
The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
subroutine outside (a)

 implicit none

 real, intent(in) :: a

 integer :: i, j

 real :: x

 ...

 call inside (i)

 x = sin (3.89) ! not the intrinsic sin()

 ...

 contains

 subroutine inside (k) ! not available outside outside()

 implicit none

 integer, intent(in) :: k

 ...

 end subroutine inside
94 Lahey Fortran 90 Language Reference

CONTINUE Statement

-

 function sin (m) ! not available outside outside()

 implicit none

 real :: sin

 real, intent(in) :: m

 ...

 end function sin

end subroutine outside

CONTINUE Statement

Description
Execution of a CONTINUE statement has no effect.

Syntax
CONTINUE

Example
 do 10 i=1,100

 ...

10 continue

COS Function

Description
Cosine.

Syntax
COS (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of the same type and kind as x. Its value is a REAL or COMPLEX representa
tion of the cosine of x.

Example
r = cos(.5) ! r is assigned the value 0.877583
Lahey Fortran 90 Language Reference 95

Chapter 2 Alphabetical Reference

r-

re
y
COSH Function

Description
Hyperbolic cosine.

Syntax
COSH (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is a REAL representation of the hype
bolic cosine of x.

Example
r = cosh(.5) ! r is assigned the value 1.12763

COUNT Function

Description
Count the number of true elements in a mask along a given dimension.

Syntax
COUNT (mask, dim)

Required Arguments
mask must be of type LOGICAL. It must not be scalar.

Optional Arguments
dim must be a scalar of type INTEGER with a value within the range , when
is the rank of mask. The corresponding actual argument must not be an optional dumm
argument.

Result
The result is of type default INTEGER. Its value and rank are computed as follows:

1. If dim is absent or mask has rank one, the result is scalar. The result is the number
of elements for which mask is true.

1 dim n≤ ≤
96 Lahey Fortran 90 Language Reference

CPU_TIME Subroutine

ssor
plica-
2. If dim is present or mask has rank two or greater, the result is an array of rank n-1 and
of shape where is the shape
of mask and n is the rank of mask. The result is the number of true elements for each
corresponding vector in mask.

Example

integer, dimension (2,3) :: a, b

integer, dimension (2) :: c

integer, dimension (3) :: d

integer :: e

a = reshape((/1,2,3,4,5,6/), (/2,3/))

 ! represents |1 3 5|

 |2 4 6|

b = reshape((/1,2,3,5,6,4/), (/2,3/))

 ! represents |1 3 6|

 |2 5 4|

e = count(a==b) ! e is assigned the value 3

d = count(a==b, 1)! d is assigned the value 2,1,0

c = count(a==b, 2)! c is assigned the value 2,1

CPU_TIME Subroutine

Description

Processor Time.

Syntax

CPU_TIME (time)

Required Arguments

time must be a scalar REAL. It is an INTENT (OUT) argument that is assigned the proce
time in seconds. Note that CPU_TIME only reflects the actual CPU time when the ap
tion is compiled for Windows and run on NT or when the application is compiled for
extended DOS and run from DOS (not from a DOS box of Windows). Otherwise,
CPU_TIME behaves like SYSTEM_CLOCK.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey Fortran 90 Language Reference 97

Chapter 2 Alphabetical Reference

hifted
direc-

Example
call cpu_time(start_time)

x = cos(2.0)

call cpu_time(end_time)

cos_time = end_time - start_time

! time to calculate and store the cosine of 2.0

CSHIFT Function

Description

Circular shift of all rank one sections in an array. Elements shifted out at one end are s
in at the other. Different sections can be shifted by different amounts and in different
tions by using an array-valued shift.

Syntax

CSHIFT (array, shift, dim)

Required Arguments

array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must
be scalar or of rank n-1 and of shape , where

 is the shape of array.

Optional Arguments

dim must be a scalar INTEGER with a value in the range , where n is the rank
of array. If dim is omitted, it is as if it were present with the value one.

Result

The result is of the same type, kind, and shape as array.

If array is of rank one, the value of the result is the value of array circularly shifted shift ele-
ments. A shift of n performed on array gives a result value of array(1 + MODULO(i + n -
1, SIZE(array))) for element i.

If array is of rank two or greater, each complete vector along dimension dim is circularly
shifted shift elements. shift can be array-valued.

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()
d1 d2 … dn, , ,()

1 dim n≤ ≤
98 Lahey Fortran 90 Language Reference

CYCLE Statement

f

Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: c, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
 ! represents |1 3 5|
 |2 4 6|
c = (/1,2,3/)
b = cshift(a,1) ! b is assigned the value |2 4 6|
 ! |1 3 5|
b = cshift(a,-1,2)! b is assigned the value |3 5 1|
 ! |4 6 2|
b = cshift(a,c,1) ! b is assigned the value |2 3 5|
 ! |1 4 6|
d = cshift(c,2) ! c is assigned the value |3 1 2|

CYCLE Statement

Description
The CYCLE statement curtails the execution of a single iteration of a DO loop.

Syntax
CYCLE [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the CYCLE statement. Ido-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO
construct in which the CYCLE statement appears.

Example
outer: do i=1, 10
inner: do j=1, 10
 if (i>a) cycle outer
 if (j>b) cycle ! cycles to inner
 ...
 enddo inner
 enddo outer

DATA Statement

Description
The DATA statement provides initial values for variables.
Lahey Fortran 90 Language Reference 99

Chapter 2 Alphabetical Reference

po-

lified
 in
nts in
nd

ust be
r host
 in

rrespon-
ngths

le

he
me;
Syntax
DATA data-stmt-set [[,] data-stmt-set] ...

Where:
data-stmt-set is object-list / value-list /

object-list is a comma-separated list of variable names or implied-dos.

value-list is a comma-separated list of [repeat *] data-constant

repeat is a scalar INTEGER constant.

data-constant is a scalar constant (either literal or named)
or a structure constructor.

implied-do is (implied-do-object-list , implied-do-var = expr, expr[, expr])

implied-do-object-list is a comma-separated list of array elements, scalar structure com
nents, or implied-dos.

implied-do-var is a scalar INTEGER variable.

expr is a scalar INTEGER expression.

Remarks
object-list is expanded to form a sequence of scalar variables. An array whose unqua
name appears in an object-list is equivalent to a complete sequence of its array elements
array element order. An array section is equivalent to the sequence of its array eleme
array element order. An implied-do is expanded to form a sequence of array elements a
structure components, under the control of the implied-do-var, as in the DO construct.

value-list is expanded to form a sequence of scalar constant values. Each such value m
a constant that is either previously defined or made accessible by a use association o
association. repeat indicates the number of times the following constant is to be included
the sequence; omission of repeat has the effect of a repeat factor of 1.

The expanded sequences of scalar variables and constant values are in one-to-one co
dence. Each constant specifies the initial value for the corresponding variable. The le
of the two expanded sequences must be the same.

A variable, or part of a variable, must not be initialized more than once in an executab
program.

A variable whose name is included in an object-list must not be: a dummy argument made
accessible by use association or host association; in a named common block unless t
DATA statement is in a block data program unit; in a blank common block; a function na
a function result name; an automatic object; a pointer; or an allocatable array.

In an array element or a scalar structure component that is in an implied-do-object-list, any
subscript must be an expression whose primaries are either constants or implied-do-vars of
the containing implied-dos, and each operation must be intrinsic.
100 Lahey Fortran 90 Language Reference

DATE_AND_TIME Subroutine

g to
ue of

ight
ight

en in
char-

no

ve in
e

e) in
expr must involve as primaries only constants or implied-do-vars of the containing implied-
dos, and each operation must be intrinsic.

The value of the constant must be compatible with its corresponding variable accordin
the rules of intrinsic assignment, and the variable becomes initially defined with the val
the constant in accordance with the rules of intrinsic assignment.

Example
real :: a
integer, dimension (-3:3) :: smallarray
integer, dimension (10000) :: bigarray

data a /3.78/, smallarray /7 * 1/
 ! assigns 3.78 to a and 1 to each
 ! element of smallarray
data (bigarray(i), i=1,10000,2) /5000*6/

 ! assigns 6 to each element that
 ! has an odd subscript value

DATE_AND_TIME Subroutine

Description
Date and real-time clock data.

Syntax
DATE_AND_TIME (date, time, zone, values)

Optional Arguments
date must be scalar and of type default CHARACTER, and must be of length at least e
in order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost e
characters are set to a value of the form ccyymmdd, where cc is the century, yy the year within
the century, mm the month within the year, and dd the day within the month. If there is no
date available, they are set to blank.

time must be scalar and of type default CHARACTER, and must be of length at least t
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost ten
acters are set to a value of the form hhmmss.sss, where hh is the hour of the day, mm is the
minutes of the hour, and ss.sss is the seconds and milliseconds of the minute. If there is
clock available, they are set to blank.

zone must be scalar and of type default CHARACTER, and must be of length at least fi
order to contain the complete value. It is an INTENT (OUT) argument. Its leftmost fiv
characters are set to a value of the form +-hhmm, where hh and mm are the time difference
with respect to Coordinated Universal Time (UTC, also known as Greenwich Mean Tim
Lahey Fortran 90 Language Reference101

Chapter 2 Alphabetical Reference

ilable,
ariable

ep-
t
cal

 the
 in
t set

nt.

tes,
hours and parts of an hour expressed in minutes, respectively. If there is no clock ava
they are set to blank. To use the zone argument, you must first set the environment v
TZ as follows:

set TZ =ZZZ[+/-]d[d][LLL]

where ZZZ is a three-character string representing the name of the current time zone; [+/-
]d[d] is a required field containing an optionally signed number with one or two digits r
resenting the local time zone’s difference from UTC in hours (negative numbers adjus
eastward from UTC); and [LLL] is an optional three-character field that represents the lo
time zone’s daylight savings time. If [LLL] is present then 1 is added to [+/-]d[d] . ZZZ and
LLL (if present) must be uppercase. For example, "TZ=PST-8PDT" would be used on
west coast of the United States during the portion of the year when daylight savings is
effect, and "TZ=PST-8" during the rest of the year. If the TZ environment variable is no
or is set using an invalid format then zone will be set to blanks.

values must be of type default INTEGER and of rank one. It is an INTENT (OUT) argume
Its size must be at least eight. The values returned in VALUES are as follows:

values (1) the year (for example, 1990), or -huge(0) if there is no date available.

values (2) the month of the year, or -huge(0) if there is no date available.

values (3) the day of the month, or -huge(0) if there is no date available.

values (4) the time difference with respect to Coordinated Universal Time (UTC) in minu
or -huge(0) if this information is not available.

values (5) the hour of the day, in the range of 0 to 23, or -huge(0) if there is no clock.

values (6) the minutes of the hour, in the range of 0 to 59, or -huge(0) if there is no clock.

values (7) the seconds of the minute, in the range 0 to 60, or -huge(0) if there is no clock.

values (8) the milliseconds of the second, in the range 0 to 999, or -huge(0) if there is no
clock.

 Example
! called in Incline Village, NV on February 3, 1993

! at 10:41:04.1

integer :: dt(8)

character (len=10) :: time, date, zone

call date_and_time (date, time, zone, dt)

! date is assigned the value "19930203"

! time is assigned the value "104104.100"

! zone is assigned the value "-800"

! dt is assigned the value: 1993,2,3,

! -480,10,41,4,100.
102 Lahey Fortran 90 Language Reference

DBLE Function

ation
 part

isas-

ot
DBLE Function

Description
Convert to double-precision REAL type.

Syntax
DBLE (a)

Arguments
a must be of type INTEGER, REAL or COMPLEX.

Result
The result is of double-precision REAL type. Its value is a double precision represent
of a. If a is of type COMPLEX, the result is a double precision representation of the real
of a.

Example
double precision d

d = dble (1) ! d is assigned the value 1.00000000000000

DEALLOCATE Statement

Description
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and d
sociates pointers.

Syntax
DEALLOCATE (object-list [, STAT = stat-variable])

Where:
object-list is a comma-separated list of pointers or allocatable arrays.

stat-variable is a scalar INTEGER variable.

Remarks
If the optional STAT= is present and the DEALLOCATE statement succeeds, stat-variable
is assigned the value zero. If STAT= is present and the DEALLOCATE statement fails,stat-
variable is assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does n
contain the STAT= specifier, the executable program is terminated.
Lahey Fortran 90 Language Reference103

Chapter 2 Alphabetical Reference

ssoci-

nter

 of

 must

type
Deallocating an allocatable array that is not currently allocated or a pointer that is disa
ated or whose target was not allocated causes an error condition in the DEALLOCATE
statement.

If a pointer is currently associated with an allocatable array, the pointer must not be
deallocated.

Deallocating an allocatable array or pointer with the TARGET attribute causes the poi
association status of any pointer associated with it to become undefined.

Example
deallocate (a, b, stat=s) ! causes a and b to be

 ! deallocated. If success-

 ! ful, s is assigned 0

Derived-Type Definition Statement

Description
The derived type definition statement begins a derived type definition.

Syntax
TYPE [[, access-spec] ::] type-name

Where:
access-spec is PUBLIC
or PRIVATE

type-name is the name of the derived type being defined.

Remarks
access-spec is permitted only if the derived type definition is within the specification part
a module.

If a component of a derived type is of a type declared to be private, either the definition
contain the PRIVATE statement or the derived type must be private.

type-name must not be the name of an intrinsic type nor of another accessible derived
name.

Example
type coordinate

 real :: x,y

end type
104 Lahey Fortran 90 Language Reference

DIGITS Function

its
DIGITS Function

Description
Number of significant binary digits.

Syntax
DIGITS (x)

Arguments
x must be of type INTEGER or REAL. It can be scalar or array-valued.

Result
The result is of type default INTEGER. Its value is the number of significant binary dig
in x.

Example
real :: r

integer :: i

i = digits (r) ! i is assigned the value 24

DIM Function

Description
The difference between two numbers if the difference is positive; zero otherwise.

Syntax
DIM (x, y)

Arguments
x must be of type INTEGER or REAL.

y must be of the same type and kind as x.

Result
The result is of the same type as x. Its value is x - y if x is greater than y and zero otherwise.

Example
z = dim(1.1, 0.8) ! z is assigned the value 0.3

z = dim(0.8, 1.1) ! z is assigned the value 0.0
Lahey Fortran 90 Language Reference105

Chapter 2 Alphabetical Reference

-shape

ed

gram

gram
DIMENSION Statement

Description
The DIMENSION statement specifies the shape of an array.

Syntax
DIMENSION [::] array-name (array-spec) [, array-name (array-spec)] ...

Where:

array-name is the name of an array.

array-spec is explicit-shape-specs

or assumed-shape-specs

or deferred-shape-specs

or assumed-size-spec

explicit-shape-specs is a comma-separated list of [lower-bound :] upper-bound that specifies
the shape and bounds of an explicit-shape array.

assumed-shape-specs is a comma-separated list of [lower-bound] : that, with the dimensions
of the corresponding actual argument, specifies the shape and bounds of an assumed
array.

deferred-shape-specs is a comma-separated list of colons that specifies the rank of a
deferred-shape array.

assumed-size-spec is [explicit-shape-specs,] [lower-bound :] *

assumed-size-spec specifies the shape of a dummy argument array whose size is assum
from the corresponding actual argument array.

lower-bound is a scalar INTEGER expression that can be evaluated on entry to the pro
unit that specifies the lower bound of a given dimension of the array.

upper-bound is a scalar INTEGER expression that can be evaluated on entry to the pro
unit that specifies the upper bound of a given dimension of the array.

Example
dimension a(3,2,1) ! a is a 3x2x1 array

dimension b(-3:3) ! b is a 7-element vector with a

 ! lower bound of -3

dimension c(:,:,:) ! c is an assumed-shape or

 ! deferred-shape array of

 ! rank 3

dimension d(*) ! d is an assumed-size array
106 Lahey Fortran 90 Language Reference

DLL_EXPORT Statement

amic-
DLL_EXPORT Statement

Description
The DLL_EXPORT statement specifies which procedures should be available in a dyn
link library.

Syntax
DLLEXPORT dll-export-names

Where:

dll-export-names is a list of procedures defined in the current scoping unit.

Remarks
The procedures in dll-export-names must not be module procedures.

Example
function half(x)

 implicit none

 integer :: half

 dll_export half

 half = x/2

 return

end function half

DLL_IMPORT Statement

Description
The DLL_IMPORT statement specifies which procedures are to be imported from a
dynamic-link library.

Syntax
DLL_IMPORT dll-import-names

Where:

dll-import-names is a comma-separated list of procedure names.
Lahey Fortran 90 Language Reference107

Chapter 2 Alphabetical Reference

 or exe-

IT,

e spec-
Example
program main
 implicit none
 integer :: foo, i
 dll_import foo
 i = half(i)
 stop
end program main

DO Construct

Description
The DO construct specifies the repeated execution (loop) of a sequence of statements
cutable constructs.

Syntax
do-statement

block
do-termination

Where:
do-statement is a DO statement

block is a sequence of zero or more statements or executable constructs.

do-termination is END DO [construct-name]
or label action-stmt

action-stmt statement is an action statement other than a GOTO, RETURN, STOP, EX
CYCLE, assigned GOTO, arithmetic IF, or END statement.

Remarks
If a construct name is specified in the DO statement, the same construct name must b
ified in a corresponding END DO statement.

Ending a DO construct with a labeled action statement is obsolescent.

Example
do i=1,100 ! iterates 100 times
 do while (a>b) ! iterates while a>b
 do 10 j=1,100,3 ! iterates 33 times
 ...
10 continue
 end do
end do
108 Lahey Fortran 90 Language Reference

DO Statement

oop.

cution

ion

n

in
er-
nt of
 of the
f
The CYCLE statement can be used to curtail execution of the current iteration of a DO l
The EXIT statement can be used to exit a DO loop altogether.

DO Statement

Description

The DO statement begins a DO construct. The DO construct specifies the repeated exe
(loop) of a sequence of executable statements or constructs.

Syntax

[construct-name :] DO [label] [loop-control]

Where:

construct-name is an optional name given to the DO construct.

label is the optional label of a statement that terminates the DO construct.

loop-control is [,] do-variable = expr, expr [, expr]

or [,] WHILE (while-expr)

do-variable is a scalar variable of type INTEGER, default REAL, or default double-precis
REAL.

expr is a scalar expression of type INTEGER, default REAL, or default double-precisio
REAL. The first expr is the initial value of do-variable; the second expr is the final value of
do-variable; the third expr is the increment value for do-variable.

while-expr is a scalar LOGICAL expression.

Remarks

When a DO statement is executed, a DO construct becomes active. The expressions loop-
control are evaluated, and, if do-variable is present, it is assigned an initial value and an it
ation count is established for the construct based on the expressions. An iteration cou
zero is possible. Note that because the iteration count is established before execution
loop, changing the do-variable within the range of the loop has no effect on the number o
iterations. If loop-control is WHILE (while-expr), while-expr is evaluated and if false, the
loop terminates and the DO construct becomes inactive. If there is no loop-control it is as if
the iteration count were effectively infinite.

Use of default or double-precision REAL for the do-variable is obsolescent.
Lahey Fortran 90 Language Reference109

Chapter 2 Alphabetical Reference

-

e as

GI-
lt

t with
-
t that
Example
do i=1,100 ! iterates 100 times

 do while (a>b) ! iterates while a>b

 do 10 j=1,100,3 ! iterates 33 times each time

 ! this do construct is entered

 ...

10 continue

 end do

end do

DOT_PRODUCT Function

Description
Dot-product multiplication of vectors.

Syntax
DOT-PRODUCT (vector_a, vector_b)

Arguments
vector_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array
valued and of rank one.

vector_b must be of numeric type if vector_a is of numeric type and of type LOGICAL if
vector_a is of type LOGICAL. It must be array-valued, of rank one, and of the same siz
vector_a.

Result
If the arguments are of type LOGICAL, then the result is scalar and of type default LO
CAL. Its value is ANY (vector_a .AND. vector_b). If the vectors have size zero, the resu
has the value false.

If the arguments are of different numeric type, then the result type is that of the argumen
the higher type, where COMPLEX is higher than REAL, and REAL is higher than INTE
GER. If both arguments are of the same type, the result kind is the kind of the argumen
offers the greater range. The result value is SUM (vector_a * vector_b) if vector_a is of type
REAL or INTEGER. The result value is SUM (CONJG (vector_a) * vector_b) if vector_a
is of type COMPLEX.

Example
i = dot_product((/3,4,5/),(/6,7,8/))

 ! i is assigned the value 86
110 Lahey Fortran 90 Language Reference

DOUBLE PRECISION Statement

.

O-

ent.

tion

.

a pro-
e, an

ith

ec-
DOUBLE PRECISION Statement

Description
The DOUBLE PRECISION statement declares entities of type double precision REAL

Syntax
DOUBLE PRECISION [[, attribute-list] ::] entity [, entity] ...

Where:
attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a DOUBLE PRECISION statem

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in blank common, an allocatable array, a pointer, an external nam
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.
Lahey Fortran 90 Language Reference 111

Chapter 2 Alphabetical Reference

ed

cat-

mmy

N-

.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a DOUBLE PRECISION statement must not have the EXTERNAL or INTRI
SIC attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
double precision a, b, c ! a, b, and c are of type

 ! double precision

double precision, dimension (2, 4) :: d

 ! d is a 2 by 4 array

 ! of double precision

double precision :: e = 2.0d0

 ! e is initialized

DPROD Function

Description
Double-precision REAL product.
112 Lahey Fortran 90 Language Reference

DVCHK Subroutine

ation

he
ions
ec-
r a

tion

truct
Syntax
DPROD (x, y)

Arguments
x must be of type default REAL.

y must be of type default REAL.

Result
The result is of type double-precision REAL. Its value is a double-precision represent
of the product of x and y.

Example
dub = dprod (3.e2, 4.4e4) ! dub is assigned 13.2d6

DVCHK Subroutine

Description
The initial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on t
floating-point unit. lflag must be set to true on the first invocation. Subsequent envocat
return true or false in the lflag variable if the exception has occurred or not occurred, resp
tively. DVCHK will not check or mask zero divided by zero. Use INVALOP to check fo
zero divided by zero.

Syntax
DVCHK (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if a divide-by-zero excep
has occurred, and false otherwise.

Example
call dvchk (lflag) ! mask the divide-by-zero interrupt

ELSE IF Statement

Description
The ELSE IF statement controls conditional execution of a block of code in an IF cons
where all previous IF expressions are false.
Lahey Fortran 90 Language Reference 113

Chapter 2 Alphabetical Reference

uct

state-
false.
Syntax
ELSE IF (expr) THEN [construct-name]

Where:
expr is a scalar LOGICAL expression.

construct-name is the optional name given to the IF construct.

Example
if (i>-1) then
 print*, b
else if (i<j) then ! executed only if true and previous
 ! if expression was false
 print*, c
end if

ELSE Statement

Description
The ELSE statement controls precedes a block of code to be executed in an IF constr
where all previous IF expressions are false.

Syntax
ELSE [construct-name]

Where:
construct-name is the optional name given to the IF construct.

Example
if (i>j) then
 print*, a
else if (i<j) then
 print*, b
else ! executed if previous if expressions were false
 print*, c
end if

ELSEWHERE Statement

Description
The ELSEWHERE statement controls conditional execution of a block of assignment
ments for elements of an array for which the WHERE construct’s mask expression is
114 Lahey Fortran 90 Language Reference

END Statement

f the

.

 END

cut-
nd

ting
Syntax
ELSEWHERE

Remarks
In each assignment statement the mask expression and the variable on the left side o
assignment statement must be of the same shape.

The assignment statement must not be a defined assignment

Example
where (b>c) ! begin where construct

 b = -1

elsewhere

 b = 1

end where

END Statement

Description
The END statement ends a program unit, module subprogram, or internal subprogram

Syntax
END [class [name]]

Where:

class is either PROGRAM, FUNCTION, SUBROUTINE, MODULE, INTERFACE or
BLOCK DATA.

name is the name of the program unit, module subprogram, or internal subprogram.

Remarks
Each program unit, module subprogram, or internal subprogram must have exactly one
statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are exe
able and can be branch target statements. The END MODULE, END INTERFACE, a
END BLOCK DATA statements are non-executable.

Executing an END FUNCTION or END SUBROUTINE statement is equivalent to execu
a return statement in a subprogram.

Executing an END PROGRAM statement terminates the executing program.
Lahey Fortran 90 Language Reference 115

Chapter 2 Alphabetical Reference

 inter-

-

denti-
name can be used only if a name was given to the program unit, module subprogram, or
nal subprogram in a PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK
DATA statement. name cannot be used with an END INTERFACE statement.

If name is present, it must be identical to the name specified in the PROGRAM, FUNCTION,
SUBROUTINE, MODULE, or BLOCK DATA statement.

Example
program names

 call joe

 call bill

 call fred

end program names ! program and names are optional

subroutine joe

end subroutine joe ! ok end statement

subroutine bill

end subroutine ! also ok end statement

subroutine fred

end ! also ok end statement

END DO Statement

Description
The END DO statement ends a DO construct.

Syntax
END DO [construct-name]

Where:

construct-name is the name of the DO construct.

Remarks
If the DO statement of the DO construct is identified by a construct-name, the corresponding
END DO statement must specify the same construct-name. If the DO statement is not iden
tified by a construct-name, the END DO statement must not specify a construct-name.

If the DO statement specifies a label, the corresponding END DO statement must be i
fied with the same label.
116 Lahey Fortran 90 Language Reference

ENDFILE Statement

e is

ber

on of

n
ther-
n is

t be
ILE

 to be
Example
named: do i=1,10

labeled: do 10 j=1,10

 do k=1,10

 ...

 end do

10 end do labeled

 end do named

ENDFILE Statement

Description
The ENDFILE statement writes an endfile record as the next record of the file. The fil
then positioned after the endfile record, which becomes the last record of the file.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit num
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during executi
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error conditio
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero o
wise. If stat is present and error, end-of-file, or end-of-record condition occurs, executio
not terminated.

Remarks
After execution of an ENDFILE statement, a BACKSPACE or REWIND statement mus
executed to reposition the file before any data transfer statement or subsequent ENDF
statement.

An ENDFILE statement on a file that is connected but does not yet exist causes the file
created before writing the endfile record.
Lahey Fortran 90 Language Reference 117

Chapter 2 Alphabetical Reference

Example
endfile 8 ! writes an endfile record to the file

 ! connected to unit 8

END IF Statement

Description
The END IF statement ends an IF construct.

Syntax
END IF [construct-name]

Where:

construct-name is the name of the IF construct.

Remarks
If the IF statement of the IF construct is identified by a construct-name, the corresponding
END IF statement must specify the same construct-name. If the IF statement is not identified
by a construct-name, the END IF statement must not specify construct-name.

Example
if (a.gt.b) then

 c = 1

 d = 2

end if

END SELECT Statement

Description
The END SELECT statement ends a CASE construct.

Syntax
END SELECT [construct-name]

Where:

construct-name is the name of the CASE construct.
118 Lahey Fortran 90 Language Reference

END WHERE Statement

ith a
Remarks
If the SELECT CASE statement of the CASE construct is identified by a construct-name, the
corresponding END SELECT statement must specify the same construct-name. If the
SELECT CASE statement is not identified by a construct-name, the END SELECT state-
ment must not specify construct-name.

Example
select case (i)
case (:-1)
 print*, "negative"
case (0)
 print*, "zero"
case (1:)
 print*, "positive"
end select

END WHERE Statement

Description
The END WHERE statement ends a WHERE construct.

Syntax
END WHERE

Example
where (c > d) ! c and d are arrays
 c = 1
 d = 2
end where

ENTRY Statement

Description
The ENTRY statement permits one program unit to define multiple procedures, each w
different entry point.

Syntax
ENTRY entry-name [([dummy-arg-list]) [RESULT (result-name)]]

Where:
entry-name is the name of the entry.
Lahey Fortran 90 Language Reference 119

Chapter 2 Alphabetical Reference

. An

is

-

gram.

 con-

ine is
dummy-arg-list is a comma-separated list of dummy arguments or * alternate return
indicators.

result-name is the name of the result.

Remarks
An ENTRY statement can appear only in an external subprogram or module subprogram
ENTRY statement must not appear within an executable construct.

ENTRY statement in a function

If the ENTRY statement is contained in a function subprogram, an additional function
defined by that subprogram. The name of the function is entry-name and its result variable
is result-name or is entry-name if no result-name is provided. The characteristics of the func
tion result are specified by specifications of the result variable.

If RESULT is specified, entry-name must not appear in any specification statement in the
scoping unit of the function program.

RESULT can be present only if the ENTRY statement is contained in a function subpro

If RESULT is specified, result-name must not be the same as entry-name.

ENTRY statement in a subroutine

A dummy argument can be an alternate return indicator only if the ENTRY statement is
tained in a subroutine subprogram.

If the ENTRY statement is contained in a subroutine subprogram, an additional subrout
defined by that subprogram. The name of the subroutine is entry-name. The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

Example
program main

 i=2

 call square(i)

 j=2

 call quad(j)

 print*, i,j ! prints 4 16

end program main

subroutine quad(k)

 k=k*k

entry square(k)

 k=k*k

 return

end subroutine quad
120 Lahey Fortran 90 Language Reference

EOSHIFT Function

and
by dif-

lanks
EOSHIFT Function

Description
End-off shift of all rank one sections in an array. Elements are shifted out at one end
copies of boundary values are shifted in at the other. Different sections can be shifted
ferent amounts and in different directions by using an array-valued shift.

Syntax
EOSHIFT (array, shift, boundary, dim)

Required Arguments
array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalar if array is of rank one; otherwise it must
be scalar or of rank n-1 and of shape , where

 is the shape of array.

Optional Arguments
boundary must be of the same type and kind as array. If array is of type CHARACTER,
boundary must have the same length as array. It must be scalar if array is of rank one; oth-
erwise it must be scalar or of rank n-1 and of shape .
boundary can be omitted, in which case the default values are zero for numeric types, b
for CHARACTER, and false for LOGICAL.

dim must be a scalar INTEGER with a value in the range , where n is the rank
of array. If dim is omitted, it is as if it were present with a value of one.

Result
The result is of the same type, kind and shape as array.

Element of the result has the value
array where sh is shift or
shift provided the inequality

holds and is otherwise boundary or
boundary .

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()
d1 d2 … dn, , ,()

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,()

1 dim n≤ ≤

s1 s2 … sn, , ,()
s1 s2 … sdim 1– sdim sh+ sdim 1+ … sn, , , , , , ,()

s1 s2 … sdim 1– sdim 1+ … sn, , , , , ,()
lbound array dim,() sdim sh+ ubound array dim,()≤ ≤

s1 s2 … sdim 1– sdim 1+ … sn, , , , , ,()
Lahey Fortran 90 Language Reference121

Chapter 2 Alphabetical Reference
Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: c, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
 ! represents |1 3 5|
 |2 4 6|
c = (/1,2,3/)
b = eoshift(a,1) ! b is assigned the value |0 0 0|
 ! |1 3 5|
b = eoshift(a,-1,0,2) ! b assigned the value |3 5 0|
 ! |4 6 0|
b = eoshift(a,-c,1)! b is assigned the value |2 1 1|
 ! |1 1 1|
d = eoshift(c,2) ! c is assigned the value |3 0 0|

EPSILON Function

Description
Positive value that is almost negligible compared to unity.

Syntax
EPSILON (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result
The result is a scalar value of the same kind as x. Its value is 21-p, where p is the number of
bits in the fraction part of the physical representation of x.
122 Lahey Fortran 90 Language Reference

EQUIVALENCE Statement

 unit

s.

nt

y prop-
Example
! reasonably safe compare of two default REALs

function equals (a, b)

 implicit none

 logical :: equals

 real, intent(in) :: a, b

 real :: eps

 eps = abs(a) * epsilon(a) ! scale epsilon

 if (eps == 0) then

 eps = tiny (a) ! if eps underflowed to 0

 ! use a very small

 ! positive value for epsilon

 end if

 if (abs(a-b) > eps) then

 equals = .false. ! not equal if difference>eps

 return

 else

 equals = .true. ! equal otherwise

 return

 endif

end function equals

EQUIVALENCE Statement

Description
The EQUIVALENCE statement is used to specify that two or more objects in a scoping
share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets is a comma-separated list of (equivalence-objects)

equivalence-objects is a comma-separated list of variables, array elements, or substring

Remarks
If the equivalenced objects have different types or kinds, the EQUIVALENCE stateme
does not cause any type conversion or imply mathematical equivalence.

If a scalar and an array-valued object are equivalenced, the scalar does not have arra
erties and the array does not have scalar properties.
Lahey Fortran 90 Language Reference123

Chapter 2 Alphabetical Reference

an
nter at
e, a
ceding

ER

,
,

ts of
to be

ore

age
ce
An equivalence-object must not be a dummy argument, a pointer, an allocatable array,
object of a non-sequence derived type or of a sequence derived type containing a poi
any level of component selection, an automatic object, a function name, an entry nam
result name, a named constant, a structure component, or a subobject of any of the pre
objects.

If an equivalence-object is of a derived type that is not a numeric sequence or CHARACT
sequence type, all of the objects in the equivalence set must be of the same type.

If an equivalence-object is of an intrinsic type other than default INTEGER, default REAL
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER
all of the objects in equivalence-set must be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objec
type default CHARACTER. The lengths of the equivalenced objects are not required
the same.

An EQUIVALENCE statement must not specify that the same storage unit is to occur m
than once in a storage sequence.

Example
equivalence (a,b,c(2)) ! a, b, and c(2) share the

 ! same storage

ERROR Subroutine

Description
Print a message to the console, then continue processing.

Syntax
ERROR (message)

Arguments
message must be of type CHARACTER. It is an INTENT(IN) argument that is the mess
to be printed. Note that to generate a subprogram traceback you must specify the -tra
compiler switch.

Example
call error(’error’) ! prints the string ’error’

 ! followed by a subprogram

 ! traceback
124 Lahey Fortran 90 Language Reference

EXIT Statement

EXIT Statement

Description
The EXIT statement terminates a DO loop.

Syntax
EXIT [do-construct-name]

Where:
do-construct-name is the name of a DO construct that contains the EXIT statement. If do-
construct-name is omitted, it is as if do-construct-name were the name of the innermost DO
construct in which the EXIT statement appears.

Example
outer: do i=1, 10
inner: do j=1, 10
 if (i>a) exit outer
 if (j>b) exit ! exits inner
 ...
 enddo inner
 enddo outer

EXIT Subroutine

Description
Terminate the program and set the DOS error level.

Syntax
EXIT (ilevel)

Arguments
ilevel must be of type INTEGER. It is the DOS error level set on program termination.

Example
call exit(3) ! exit -- DOS error level 3

EXP Function

Description
Exponential.
Lahey Fortran 90 Language Reference125

Chapter 2 Alphabetical Reference

e

me as
Syntax
EXP (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of the same type as x. Its value is a REAL or COMPLEX representation of ex.
If x is of type COMPLEX, its imaginary part is treated as a value in radians.

Example
a = exp(2.0) ! a is assigned the value 7.38906

EXPONENT Function

Description
Exponent part of the model representation of a number.

Syntax
EXPONENT (x)

Arguments
x must be of type REAL.

Result
The result is of type default INTEGER. Its value is the value of the exponent part of th
model representation of x.

Example
i = exponent(3.8) ! i is assigned 2

i = exponent(-4.3)! i is assigned 3

EXTERNAL Statement

Description
The EXTERNAL statement specifies external procedures. Specifying a procedure na
EXTERNAL permits the name to be used as an actual argument.
126 Lahey Fortran 90 Language Reference

FLOOR Function

s, or

dure

 than
Syntax
EXTERNAL external-name-list

Where:
external-name-list is a comma-separated list of external procedures, dummy procedure
block data program units.

Remarks
If an intrinsic procedure name appears in an EXTERNAL statement, the intrinsic proce
is not available in the scoping unit and the name is that of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

Example
subroutine fred (a, b, sin)
external sin ! sin is the name of an external
 ! procedure, not the intrinsic sin()
call bill (a, sin)
 ! sin can be passed as an actual arg

FLOOR Function

Description
Greatest INTEGER less than or equal to a number.

Syntax
FLOOR (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type default INTEGER. Its value is equal to the greatest INTEGER less
or equal to a. If kind is present, the kind is that specified by kind. If kind is absent, the kind
is that of the default REAL type.

Example
i = floor(-2.1) ! i is assigned the value -3
j = floor(2.1) ! j is assigned the value 2
Lahey Fortran 90 Language Reference127

Chapter 2 Alphabetical Reference

his

 of

 the
FLUSH Subroutine

Description
Empty the buffer for an input/output unit by writing to its corresponding file. Note that t
does not flush the DOS file buffer.

Syntax
FLUSH (iunit)

Arguments
iunit must be of type INTEGER. It is an INTENT(IN) argument that is the unit number
the file whose buffer is to be emptied.

Example
call flush(11) ! empty buffer for unit 11

FORMAT Statement

Description
The FORMAT statement provides explicit information that directs the editing between
internal representation of data and the characters that are input or output.

Syntax
FORMAT ([format-items])

Where:
format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)

data-edit-descriptor is Iw[.m]
or Bw[.m]
or Ow[.m]
or Zw[.m]
or Fw.d
or Ew.d[Ee]
or ENw.d[Ee]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw
or A[w]
or Dw.d
128 Lahey Fortran 90 Language Reference

FORMAT Statement

the

s of

.

factor.
ting
w, m, d, and e are INTEGER literal constants that represent field width, digits, digits after
decimal point, and exponent digits, respectively.

control-edit-descriptor is Tn

or TLn

or TRn

or nX

or S

or SP

or SS

or BN

or BZ

or [r] /

or :

or kP

char-string-edit-descriptor is a CHARACTER literal constant or cHrep-chars

rep-chars is a string of characters.

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants used to specify a number of repetition
the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or (format-
items)

Remarks

The FORMAT statement must be labeled.

The comma between edit descriptors may be omitted in the following cases:

• between the scale factor (P) and the numberic edit descriptors F, E, EN, ES, D, or G

• before a new record indicated by a slash when there is no repeat factor present.

• after the slash for a new record.

• before or after the colon edit descriptor.

Edit descriptors may be nested within parentheses and may be preceded by a repeat
A parenthesized list of edit descriptors may also be preceded by a repeat factor, indica
that the entire list is to be repeated.
Lahey Fortran 90 Language Reference129

Chapter 2 Alphabetical Reference

or

riptor;

pos-
The edit descriptors
I (decimal INTEGER),
B (binary INTEGER),
O (octal INTEGER),
Z (hexadecimal INTEGER),
F (REAL or COMPLEX, no exponent on output),
E and D (REAL or COMPLEX, exponent on output),
EN (engineering notation),
ES (scientific notation),
G (generalized),
L (LOGICAL),
A (CHARACTER),
T (position from beginning of record),
TL (position left from current position),
TR (position right from current position),
X (position forward from current position),
S (default plus production on output),
SP (force plus production on output),
SS (suspend plus production on output),
BN (ignore non-leading blanks on input),
BZ (non-leading blanks are zeros on input),
/ (end of current record),
: (terminate format control), and
P (scale factor)
indicate the manner of data editing.

Descriptions of each edit descriptor are provided in “Input/Output Editing” beginning on
page 24.

The comma used to separate items in format-items can be omitted between a P edit descript
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit desc
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if a delimiter character itself appears, either an a
trophe or quote, it must be as a consecutive pair without any blanks. Each such pair
represents a single occurence of the delimiter character.

Example
 a = 123.45

 write (7,10) a

 write (7,20) a

10 format (e11.5) ! 0.12345E+03

20 format (2p, e12.5) ! 12.3450E+01
130 Lahey Fortran 90 Language Reference

FRACTION Function

al

 and
ursive.
FRACTION Function

Description
Fraction part of the physical representation of a number.

Syntax
FRACTION (x)

Arguments
x must be of type REAL.

Result
The result is of the same kind as x. Its value is the value of the fraction part of the physic
representation of x.

Example
a = fraction(3.8) ! a is assigned the value 0.95

FUNCTION Statement

Description
The FUNCTION statement begins a function subprogram, and specifies its return type
name (the function name by default), its dummy argument names, and whether it is rec

Syntax
[RECURSIVE] [type-spec] FUNCTION function-name ([dummy-arg-names]
) [RESULT (result-name)]

or
[type-spec] [RECURSIVE] FUNCTION function-name ([dummy-arg-names]
) [RESULT (result-name)]

Where:
type-spec is INTEGER [kind-selector]
or REAL [kind-selector]
or DOUBLE PRECISION
or COMPLEX [kind-selector]
or CHARACTER [char-selector]
or LOGICAL [kind-selector]
or TYPE (type-name)

kind-selector is ([KIND =] kind)
Lahey Fortran 90 Language Reference131

Chapter 2 Alphabetical Reference

elf
must
self,
-

tion

 the
r after
char-selector is (LEN = length [, KIND = kind])
or (length [,[KIND =] kind])
or (KIND = kind [, LEN = length])
or * char-length [,]

kind is a scalar INTEGER expression that can be evaluated at compile time.

length is a scalar INTEGER expression
or *

char-length is a scalar INTEGER literal constant
or (*)

function-name is the name of the function.

dummy-arg-names is a comma-separated list of dummy argument names.

result-name is the name of the result variable.

Remarks
The keyword RECURSIVE must be present if the function directly or indirectly calls its
or a function defined by an ENTRY statement in the same subprogram. RECURSIVE
also be present if a function defined by an ENTRY statement directly or indirectly calls it
another function defined by an ENTRY statement, or the function defined by the FUNC
TION statement.

A function that calls itself directly must use the RESULT option.

If the function result is array-valued or a pointer, this must be specified in the specifica
of the result variable in the function body.

Example
integer function sum(i,j) result(k)

GETCL Subroutine

Description
Get command line.

Syntax
GETCL (result)

Arguments
result must be of type CHARACTER. It is an INTENT(OUT) argument that is assigned
characters on the DOS command line beginning with the first non-white-space characte
the program name.
132 Lahey Fortran 90 Language Reference

GETENV Function

ec-

 spec-
V

OTO
Example
call getcl(cl) ! cl is assigned the command line

GETENV Function

Description
Get the specified environment variable.

Syntax
GETENV(variable)

Arguments
variable must be of type default CHARACTER. It is an INTENT(IN) argument which sp
ifies the environment variable to check.

Result
The result is of type default character and is set to the value of the environment variable
ified by variable. If the specified variable is not defined in the environment then GETEN
will return a zero-length string.

Example
character (len=80) :: mypath

mypath = getenv(’path’)

GOTO Statement

Description
The GOTO statement transfers control to a statement identified by a label.

Syntax
GOTO label

Where:
label is the label of a branch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the G
statement.
Lahey Fortran 90 Language Reference133

Chapter 2 Alphabetical Reference

Example
 a = b

 goto 10 ! branches to 10

 b = c ! never executed

10 c = d

HUGE Function

Description
Largest representable number of data type.

Syntax
HUGE (x)

Arguments
x must be of type REAL or INTEGER.

Result
The result is of the same type and kind as x. Its value is the value of the largest number in
the data type of x.

Example
a = huge(4.1) ! a is assigned the value 0.340282E+39

IACHAR Function

Description
Position of a character in the ASCII collating sequence.

Syntax
IACHAR (c)

Arguments
c must be of type default CHARACTER and of length one.

Result
The result is of type default INTEGER. Its value is the position of c in the ASCII collating
sequence and is in the range .0 iachar c() 127≤ ≤
134 Lahey Fortran 90 Language Reference

IAND Function

 log-

 in
Example
i = iachar('c') ! i is assigned the value 99

IAND Function

Description
Bit-wise logical AND.

Syntax
IAND (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER. Its value is the value obtained by performing a bit-wise
ical AND of i and j.

Example
i=53 ! i = 00110101 binary (lowest-order byte)

j=45 ! j = 00101101 binary (lowest-order byte)

k=iand(i,j) ! k = 00100101 binary (lowest-order byte)

 ! k = 37 decimal

IBCLR Function

Description
Clear one bit to zero.

Syntax
IBCLR (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bitsi.
Lahey Fortran 90 Language Reference135

Chapter 2 Alphabetical Reference

t
Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i except
that bit pos is set to zero. Note that the lowest order pos is zero.

Example
i = ibclr (37,2) ! i is assigned the value 33

IBITS Function

Description
Extract a sequence of bits.

Syntax
IBITS (i, pos, len)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and pos+len must be less than or
equal to the number of bits in i.

len must be of type INTEGER and non-negative.

Result
The result is of type INTEGER and of the same kind as i. Its value is the value of the
sequence of len bits beginning with pos, right adjusted with all other bits set to 0. Note tha
the lowest order pos is zero.

Example
i = ibits (37,2,2) ! i is assigned the value 1

IBSET Function

Description
Set a bit to one.
136 Lahey Fortran 90 Language Reference

ICHAR Function

 in

 the
Syntax
IBSET (i, pos)

Arguments
i must be of type INTEGER.

pos must be of type INTEGER. It must be non-negative and less than the number of bitsi.

Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i except
that bit pos is set to one. Note that the lowest order pos is zero.

Example
i = ibset (37,1) ! i is assigned the value 39

ICHAR Function

Description
Position of a character in the processor collating sequence associated with the kind of
character.

Syntax
ICHAR (c)

Arguments
c must be of type CHARACTER and of length one.

Result
The result is of type default INTEGER. Its value is the position of c in the processor collating
sequence associated with the kind of c and is in the range , where n is
the number of characters in the collating sequence.

Example
i = ichar('c') ! i is assigned the value 99 for

 ! character c in the ASCII

 ! collating sequence

0 ichar c() n 1–≤ ≤
Lahey Fortran 90 Language Reference137

Chapter 2 Alphabetical Reference

 log-

ble
IEOR Function

Description
Bit-wise logical exclusive OR.

Syntax
IEOR (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER. Its value is the value obtained by performing a bit-wise
ical exclusive OR of i and j.

Example
i=53 ! i = 00110101 binary (lowest-order byte)
j=45 ! j = 00101101 binary (lowest-order byte)
k=ieor(i,j) ! k = 00011000 binary (lowest-order byte)
 ! k = 24 decimal

IF Construct

Description
The IF construct controls which, if any, of one or more blocks of statements or executa
constructs will be executed.

Syntax
[construct-name:] IF (expr) THEN

block
[ELSE IF (expr) THEN [construct-name]

block]
...
[ELSE [construct-name]

block]
END IF [construct-name]

Where:
construct-name is an optional name for the construct.
138 Lahey Fortran 90 Language Reference

IF-THEN Statement

LSE
l be
 true
lue or
letes
n-
LSE

ock

ust
e, the
expr is a scalar LOGICAL expression.

block is a sequence of zero or more statements or executable constructs.

Remarks
At most one of the blocks contained within the IF construct is executed. If there is an E
statement in the construct, exactly one of the blocks contained within the construct wil
executed. The exprs are evaluated in the order of their appearance in the construct until a
value is found or an ELSE statement or END IF statement is encountered. If a true va
an ELSE statement is found, the block immediately following is executed and this comp
the execution of the construct. The exprs in any remaining ELSE IF statements of the IF co
struct are not evaluated. If none of the evaluated expressions is true and there is no E
statement, the execution of the construct is completed without the execution of any bl
within the construct.

If the IF statement specifies a construct name, the corresponding END IF statement m
specify the same construct name. If the IF statement does not specify a construct nam
corresponding END IF statement must not specify a construct name.

Example
if (a>b) then

 c = d

else if (a<b) then

 d = c

else ! a=b

 stop

end if

IF-THEN Statement

Description
The IF-THEN statement begins an IF construct.

Syntax
[construct-name:] IF (expr) THEN

Where:

construct-name is an optional name for the IF construct.

expr is a scalar LOGICAL expression.
Lahey Fortran 90 Language Reference139

Chapter 2 Alphabetical Reference

LSE
ll be
 true
lue or
letes
n-
LSE

ock

t of a
Remarks
At most one of the blocks contained within the IF construct is executed. If there is an E
statement in the construct, exactly one of the blocks contained within the construct wi
executed. The exprs are evaluated in the order of their appearance in the construct until a
value is found or an ELSE statement or END IF statement is encountered. If a true va
an ELSE statement is found, the block immediately following is executed and this comp
the execution of the construct. The exprs in any remaining ELSE IF statements of the IF co
struct are not evaluated. If none of the evaluated expressions is true and there is no E
statement, the execution of the construct is completed without the execution of any bl
within the construct.

Example
if (a>b) then

 c = d

else

 d = c

end if

IF Statement

Description
The IF statement controls whether or not a single executable statement is executed.

Syntax
IF (expr) action-statement

Where:

expr is a scalar LOGICAL expression.

action-statement is an executable statement other than another IF or the END statemen
program, function, or subroutine.

Remarks
Execution of an IF statement causes evaluation of expr. If the value of expr is true, action-
statement is executed. If the value is false, action-statement is not executed.

Example
if (a >= b) a = -a
140 Lahey Fortran 90 Language Reference

IMPLICIT Statement

ate-
IMPLICIT Statement

Description
The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the IMPLICIT st
ment. Alternately, it can specify that no implicit typing is to apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or

IMPLICIT NONE

Where:

implicit-specs is a comma-separated list of type-spec (letter-specs)

type-spec is INTEGER [kind-selector]

or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX [kind-selector]

or CHARACTER [char-selector]

or LOGICAL [kind-selector]

or TYPE (type-name)

kind-selector is ([KIND =] kind)

char-selector is (LEN = length [, KIND = kind])

or (length [,[KIND =] kind])

or (KIND = kind [, LEN = length])

or * char-length [,]

type-name is the name of a user-defined type.

kind is a scalar INTEGER expression that can be evaluated at compile time.

length is a scalar INTEGER expression

or *

char-length is a scalar INTEGER literal constant

or (*)

letter-specs is a comma-separated list of letter[-letter]

letter is one of the letters A-Z.
Lahey Fortran 90 Language Reference141

Chapter 2 Alphabetical Reference

con-
letter
uded in

h the

ied

te-
 in the

ntrin-
lared
letter

ent

laced

 text
Remarks
A letter-spec consisting of two letters separated by a minus is equivalent to writing a list
taining all of the letters in alphabetical order in the alphabetic sequence from the first
through the second letter. The same letter must not appear as a single letter or be incl
a range of letters more than once in all of the IMPLICIT statements in a scoping unit.

In the absence of an implicit statement, a program unit is treated as if it had a host wit
declaration

implicit integer (i-n), real (a-h, o-z)

IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specif
for a letter, the default is the mapping in the host scoping unit.

If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER sta
ments that appear in the scoping unit and there must be no other IMPLICIT statements
scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an i
sic function, and is not made accessible by use association or host association is dec
implicitly to be of the type (and type parameters, kind and length) mapped from the first
of its name, provided the mapping is not null.

An explicit type specification in a FUNCTION statement overrides an IMPLICIT statem
for the name of that function subprogram.

Example
implicit character (c), integer (a-b, d-z)
 ! specifies that all data objects
 ! beginning with c are implicitly of
 ! type character, and other data
 ! objects are of type integer

INCLUDE Line

Description
The INCLUDE line causes text in another file to be processed as if the text therein rep
the INCLUDE line. The INCLUDE line is not a Fortran statement.

Syntax
INCLUDE filename

Where:
filename is a CHARACTER literal constant that corresponds to a file that contains source
to be included in place of the INCLUDE line.
142 Lahey Fortran 90 Language Reference

INDEX Function

ional
e.

si-

Remarks
The INCLUDE line must be the only non-blank text on this source line other than an opt
trailing comment. A statement label or additional statements are not allowed on the lin

Lahey Fortran limits the level of nesting of include files to twenty.

Example
include "types.for" ! include a file named types.for

 ! in place of this INCLUDE line

INDEX Function

Description
Starting position of a substring within a string.

Syntax
INDEX (string, substring, back)

Required Arguments
string must be of type CHARACTER.

substring must be of type CHARACTER with the same kind as string.

Optional Arguments
back must be of type LOGICAL.

Result
The result is of type default INTEGER. If back is absent or false, the result value is the po
tion number in string where the first instance of substring begins or zero if there is no such
value or if string is shorter than substring. If substring is of zero length, the result value is
one.

If back is present and true, the result value is the position number in string where the last
instance of substring begins. If string is shorter than substring or if substring is not in string,
zero is returned. If substring is of zero length, LEN(string)+1 is returned.

Example
i = index('mississippi', 'si')

 ! i is assigned the value 4

i = index('mississippi', 'si', back=.true.)

 ! i is assigned the value 7
Lahey Fortran 90 Language Reference143

Chapter 2 Alphabetical Reference

, con-

t
INQUIRE Statement

Description
The INQUIRE statement enables the program to make inquiries about a file’s existence
nection, access method or other properties.

Syntax
INQUIRE (inquire-specs)

or
INQUIRE (IOLENGTH = iolength) output-items

Where:
inquire-specs is a comma-separated list of
[UNIT =] external-file-unit
or FILE = file-name-expr
or IOSTAT = iostat
or ERR = label
or EXIST = exist
or OPENED = opened
or NUMBER = number
or NAMED = named
or NAME = name
or ACCESS = access
or SEQUENTIAL = sequential
or DIRECT = direct
or FORM = form
or FORMATTED = formatted
or UNFORMATTED = unformatted
or RECL = recl
or NEXTREC = nextrec
or BLANK = blank
or POSITION = position
or ACTION = action
or READ = read
or WRITE = write
or READWRITE = readwrite
or DELIM = delim
or PAD = pad
or FLEN = flen
or BLOCKSIZE = blocksize
or CARRIAGECONTROL = carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output uni
number of an external file.
144 Lahey Fortran 90 Language Reference

INQUIRE Statement

.

 con-
zero

ified
sts,

r

tput

s a

the

file

 not
is

t
d
ile.

 if
 for

at-
e

 the
file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file

iostat is a scalar default INTEGER variable that is assigned a positive value if an error
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and
otherwise.

label is the statement label of the statement branched to if an error occurs.

exist is a scalar default LOGICAL variable that is assigned the value true if the file spec
in the FILE= specifier exists or the input/output unit specified in the UNIT= specifier exi
and false otherwise.

opened is a scalar default LOGICAL variable that is assigned the value true if the file o
input/output unit specified is connected, and false otherwise.

number is a scalar default INTEGER variable that is assigned the value of the input/ou
unit of the external file.

named is a scalar default LOGICAL variable that is assigned the value true if the file ha
name and false otherwise.

name is a scalar default CHARACTER variable that is assigned the name of the file, if
file has a name, otherwise it becomes undefined.

access is a scalar default CHARACTER variable that evaluates to SEQUENTIAL if the
is connected for sequential access, DIRECT if the file is connected for direct access, TRANS-
PARENT if the file is connected for transparent access, or UNDEFINED if the file is not
connected.

sequential is a scalar default CHARACTER variable that is assigned the value YES if
sequential access is an allowed access method for the file, NO if sequential access is
allowed, and UNKNOWN if the processor is unable to determine if sequential access
allowed for the file.

direct is a scalar default CHARACTER variable that is assigned the value YES if direc
access is an allowed access method for the file, NO if direct access is not allowed, an
UNKNOWN if the processor is unable to determine if direct access is allowed for the f

form is a scalar default CHARACTER variable that is assigned the value FORMATTED
the file is connected for formatted input/output, UNFORMATTED if the file is connected
unformatted input/output, and UNDEFINED if there is no connection.

formatted is a scalar default CHARACTER variable that is assigned the value YES if form
ted is an allowed form for the file, NO if formatted is not allowed, and UNKNOWN if th
processor is unable to determine if formatted is an allowed form for the file.

unformatted is a scalar default CHARACTER variable that is assigned the value YES if
unformatted is an allowed form for the file, NO if unformatted is not allowed, and
UNKNOWN if the processor is unable to determine if unformatted is an allowed form for
file.
Lahey Fortran 90 Language Reference145

Chapter 2 Alphabetical Reference

con-
tial

 file
 If

trol
n-

ly
d
if the

n-
 if

s an
N

E is

he

AD-
he
ed

pos-

rks

put

.

e I/O
been
er
recl is a scalar default INTEGER variable that evaluates to the record length for a file
nected for direct access, or the maximum record length for a file connected for sequen
access.

nextrec is a scalar default INTEGER variable that is assigned the value n+1, where n is the
number of the last record read or written on the file connected for direct access. If the
has not been written to or read from since becoming connected, the value 1 is assigned.
the file is not connected for direct access, the value becomes undefined.

blank is a scalar default CHARACTER variable that evaluates to NULL if null blank con
is in effect, ZERO if zero blank control is in effect, and UNDEFINED if the file is not co
nected for formatted input/output.

position is a scalar default CHARACTER variable that evaluates to REWIND if the new
opened sequential access file is positioned at its initial point; APPEND if it is positione
before the endfile record if one exists and at the file terminal point otherwise; and ASIS
position is after the endfile record.

action is a scalar default CHARACTER variable that evaluates to READ if the file is co
nected for input only, WRITE if the file is connected for output only, and READWRITE
the file is connected for input and output.

read is a scalar default CHARACTER variable that is assigned the value YES if READ i
allowed action on the file, NO if READ is not an allowed action of the file, and UNKNOW
if the processor is unable to determine if READ is an allowed action on the file.

write is a scalar default CHARACTER variable that is assigned the value YES if WRIT
an allowed action on the file, NO if WRITE is not an allowed action of the file, and
UNKNOWN if the processor is unable to determine if WRITE is an allowed action on t
file.

readwrite is a scalar default CHARACTER variable that is assigned the value YES if RE
WRITE is an allowed action on the file, NO if READWRITE is not an allowed action of t
file, and UNKNOWN if the processor is unable to determine if READWRITE is an allow
action on the file.

delim is a scalar default CHARACTER variable that evaluates to APOSTROPHE if the a
trophe will be used to delimit character constants written with list-directed or namelist
formatting, QUOTE if the quotation mark will be used, and NONE if neither quotation ma
nor apostrophes will be used.

pad is a scalar default CHARACTER variable that evaluates to YES if the formatted in
record is padded with blanks and NO otherwise.

flen is a scalar default INTEGER variable that is assigned the length of the file in bytes

blocksize is a scalar default INTEGER variable that evaluates to the size, in bytes, of th
buffer. This value may be internally adjusted to a record size boundary if the unit has
connected for direct access and therefore may no agree with the BLOCKSIZE- specifi
specified in an OPEN Statement.
146 Lahey Fortran 90 Language Reference

INT Function

the
IST

from

ess

 at

are

AC-
, the

ry
r (if
carriagecontrol is a scalar default CHARACTER variable that evaluates to FORTRAN if
first character of a formatted sequential record is to be used for carriage control, and L
otherwise.

iolength is a scalar default INTEGER variable that is assigned a value that would result
the use of output-items in an unformatted output statement. The value can be used as a
RECL= specifier in an OPEN statement that connects a file for unformatted direct acc
when there are input/output statements with the same list of output-items.

output-items is a comma-separated list of items used with iolength as explained immediately
above.

Remarks

inquire-specs must contain one FILE= specifier or one UNIT= specifier, but not both, and
most one of each of the other specifiers.

In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT=
omitted from the unit specifier, the unit specifier must be the first item in inquire-specs.

When a returned value of a specifier other than the NAME= specifier is of type CHAR
TER and the processor is capable of representing letters in both upper and lower case
value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inqui
specifier variables become undefined, except for the variable in the IOSTAT= specifie
any).

Example
inquire (unit=8, access=acc, err=200)

 ! what access method for unit 8? goto 200 on error

inquire (this_unit, opened=opnd, direct=dir)

 ! is unit this_unit open? direct access allowed?

inquire (file="myfile.dat", recl=record_length)

 ! what is the record length of file "myfile.dat"?

INT Function

Description

Convert to INTEGER type.
Lahey Fortran 90 Language Reference147

Chapter 2 Alphabetical Reference

om-

O-
Syntax
INT (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type INTEGER. If kind is present, the kind is that specified by kind. The
result's value is the value of a without its fractional part. If a is of type COMPLEX, the
result's value is the value of the real part of a without its fractional part.

Example
b = int(-3.6) ! b is assigned the value -3

INTEGER Statement

Description
The INTEGER statement declares entities of type INTEGER.

Syntax
INTEGER [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at c
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.
148 Lahey Fortran 90 Language Reference

INTEGER Statement

tion

.

a pro-
e, an

ith

ec-

ed

cat-

mmy

te

.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a INTEGER statement.

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in blank common, an allocatable array, a pointer, an external nam
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a INTEGER statement must not have the EXTERNAL or INTRINSIC attribu
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute
Lahey Fortran 90 Language Reference149

Chapter 2 Alphabetical Reference

ata
e

data
 a

both
ent

e or a
An entity must not be explicitly given any attribute more than once in a scoping unit.

Example
integer :: a, b, c ! a, b, and c are of type integer
integer, dimension (2, 4) :: d
 ! d is a 2 by 4 array of integers
integer :: e = 2 ! integer e is initialized

INTENT Statement

Description
The INTENT statement specifies the intended use of a dummy argument.

Syntax
INTENT (intent-spec) [::] dummy-args

Where:
intent-spec is IN
or OUT
or IN OUT

dummy-args is a comma-separated list of dummy arguments.

Remarks
The INTENT (IN) attribute specifies that the dummy argument is intended to receive d
from the invoking scoping unit. The dummy argument must not be redefined or becom
undefined during the execution of the procedure.

The INTENT (OUT) attribute specifies that the dummy argument is intended to return
to the invoking scoping unit. Any actual argument that becomes associated with such
dummy argument must be definable.

The INTENT (IN OUT) attribute specifies that the dummy argument is intended for use
to receive data from and to return data to the invoking scoping unit. Any actual argum
that becomes associated with such a dummy argument must be definable.

The INTENT statement must not specify a dummy argument that is a dummy procedur
dummy pointer.

Example
subroutine ex (a, b, c)
 real :: a, b, c
 intent (in) a
 intent (out) b
 intent (in out) c
150 Lahey Fortran 90 Language Reference

INTERFACE Statement

e
 be

 proce-
eric

o-

d in
e case

unc-

ts.
d with
the
t with
INTERFACE Statement

Description
The INTERFACE statement begins an interface block. An interface block specifies th
forms of reference through which a procedure can be invoked. An interface block can
used to specify a procedure interface, a defined operation, or a defined assignment.

Syntax
INTERFACE [generic-spec]

Where:

generic-spec is generic-name

or OPERATOR (defined-operator)

or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators

or .operator-name.

operator-name is a user-defined name for the operation, consisting of one to 31 letters.

Remarks
Procedure interface

A procedure interface consists of the characteristics of the procedure, the name of the
dure, the name and characteristics of each dummy argument, and the procedure's gen
identifiers, if any.

An interface statement with a generic-name specifies a generic interface for each of the pr
cedures in the interface block.

Defined operations

If OPERATOR is specified in an INTERFACE statement, all of the procedures specifie
the interface block must be functions that can be referenced as defined operations. In th
of functions of two arguments, infix binary operator notation is implied. In the case of f
tions of one argument, prefix operator notation is implied. OPERATOR must not be
specified for functions with no arguments or for functions with more than two argumen
The dummy arguments must be non-optional dummy data objects and must be specifie
INTENT (IN) and the function result must not have assumed CHARACTER length. If
operator is an intrinsic-operator, the number of function arguments must be consisten
the intrinsic uses of that operator.
Lahey Fortran 90 Language Reference151

Chapter 2 Alphabetical Reference

, in
erator
e both
ch as

ter-
of these
tional.
gu-

of the
the
e same
A given defined operator may, as with generic names, apply to more than one function
which case it is generic in exact analogy to generic procedure names. For intrinsic op
symbols, the generic properties include the intrinsic operations they represent. Becaus
forms of each relational operator have the same interpretation, extending one form (su
<=) has the effect of defining both forms (<= and .LE.).

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the procedures in the in
face block must be subroutines that can be referenced as defined assignments. Each
subroutines must have exactly two dummy arguments. Each argument must be non-op
The first argument must have INTENT (OUT) or INTENT (IN OUT) and the second ar
ment must have INTENT (IN). A defined assignment is treated as a reference to the
subroutine, with the left-hand side as the first argument and the expession to the right
equals the second argument. The ASSIGNMENT generic specification specifies that
assignment operation is extended or redefined if both sides of the equals sign are of th
derived type.

Example
interface ! interface without generic specification

 subroutine ex (a, b, c)

 implicit none

 real, dimension (2,8) :: a, b, c

 intent (in) a

 intent (out) b

 end subroutine ex

 function why (t, f)

 implicit none

 logical, intent (in) :: t, f

 logical :: why

 end function why

end interface

interface swap ! generic swap routine

 subroutine real_swap(x, y)

 implicit none

 real, intent (in out) :: x, y

 end subroutine real_swap

 subroutine int_swap(x, y)

 implicit none

 integer, intent (in out) :: x, y

 end subroutine int_swap

end interface
152 Lahey Fortran 90 Language Reference

INTRINSIC Statement

.
actual

 not

ust
cla-

s

ame
interface operator (*) ! use * for set intersection

 function set_intersection (a, b)

 use set_module ! contains definition of type set

 implicit none

 type (set), intent (in) :: a, b

 type (set) :: set_intersection

 end function set_intersection

end interface

interface assignment (=) ! use = for integer to bit

 subroutine integer_to_bit (n, b)

 implicit none

 integer, intent (in) :: n

 logical, intent (out) :: b(:)

 end subroutine integer_to_bit

end interface

INTRINSIC Statement

Description
The INTRINSIC statement specifies a list of names that represent intrinsic procedures
Doing so permits a name that represents a specific intrinsic function to be used as an
argument.

Syntax
INTRINSIC intrinsic-procedure-names

Where:
intrinsic-procedure-names is a comma-separated list of intrinsic procedures.

Remarks
The appearance of a generic intrinsic function name in an INTRINSIC statement does
cause that name to lose its generic property.

If the specific name of an intrinsic function is used as an actual argument, the name m
either appear in an INTRINSIC statement or be given the intrinsic attribute in a type de
ration statement in the scoping unit.

Only one appearance of a name in all of the INTRINSIC statements in a scoping unit i
permitted.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the s
scoping unit.
Lahey Fortran 90 Language Reference153

Chapter 2 Alphabetical Reference

T)
, DS,
 array
 array
e for
try to
nt cor-

g
Example
intrinsic dlog, dabs ! dlog and dabs allowed as
 ! actual arguments
call zee (a, b, dlog)

INTRUP Subroutine

Description
Execute a DOS or BIOS function.

Syntax
INTRUP (intary, ntrup)

Arguments
intary must be a nine-element array of type default INTEGER. It is an INTENT(IN OU
argument. The elements of the array correspond to the registers EAX, EBX, ECX, EDX
ES, EDI, ESI, and flags, in that order. The registers, except flags, are loaded from the
before the interrupt is executed. All registers, including flags, are assigned back to the
after the interrupt is finished. If the user-supplied selector for DS or ES is not legitimat
the protected-mode environment, then the DS or ES selector that was loaded upon en
the subroutine will be used. The selector actually used is assigned to the array eleme
responding to DS or ES, respectively.

To check whether a particular flag is set after returning from INTRUP, use the followin
code:

if (iand(intary(9), myflag) .NE. 0) then ...
154 Lahey Fortran 90 Language Reference

INVALOP Subroutine

upt

n
ca-
,

ep-
where myflag is one of the following values:

ntrup must be of type INTEGER, kind 2. It is an INTENT(IN) argument that is the interr
number to be executed.

Example
call intrup(regs, 21) ! int21 call

INVALOP Subroutine

Description
The initial invocation of the INVALOP subroutine masks the invalid operator interrupt o
the floating-point unit. lflag must be set to true on the first invocation. Subsequent invo
tions return true or false in the lflag variable if the exception has occurred or not occurred
respectively.

Syntax
INVALOP (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an invalid operation exc
tion has occurred, and false otherwise.

Table 9: intary values

flag value

carry 1

parity 4

auxiliary carry 16

zero 64

sign 128

trap 256

interrupt enable 512

direction 1024

overflow 2048
Lahey Fortran 90 Language Reference155

Chapter 2 Alphabetical Reference

T

ed
Example
call invalop (lflag) ! mask the invalid operation interrupt

IOR Function

Description
Bit-wise logical inclusive OR.

Syntax
IOR (i, j)

Arguments
i must be of type INTEGER.

j must be of type INTEGER and of the same kind as i.

Result
The result is of type INTEGER and of the same kind as i.

Example
i=53 ! i = 00110101 binary (lowest-order byte)

j=45 ! j = 00101101 binary (lowest-order byte)

k=ior(i,j) ! k = 00111101 binary (lowest-order byte)

 ! k = 61 decimal

IOSTAT_MSG Subroutine

Description
Get a runtime I/O error message then continue processing.

Syntax
IOSTAT_MSG (iostat, message)

Arguments
iostat must be of type INTEGER. It is an INTENT(IN) argument that passes the IOSTA
value from a preceding input/output statement.

message must be of type CHARACTER. It is an INTENT(OUT) argument that is assign
the runtime error message corresponding to the IOSTAT value in iostat.
156 Lahey Fortran 90 Language Reference

ISHFT Function

s in

e.
Example
call iostat_msg(iostat,msg) ! msg is assigned

 ! the runtime error message

 ! corresponding to iostat

ISHFT Function

Description
Bit-wise shift.

Syntax
ISHFT (i, shift)

Arguments
i must be of type INTEGER.

shift must be of type INTEGER. Its absolute value must be less than the number of biti.

Result
The result is of type INTEGER and of the same kind as i. Its value is the value of i shifted
by shift positions; if shift is positive, the shift is to the left, if shift is negative, the shift is to
the right. Bits shifted out are lost.

Example
i = ishft(3,2) ! i is assigned the value 12

ISHFTC Function

Description
Bit-wise circular shift of rightmost bits.

Syntax
ISHFTC (i, shift, size)

Required Arguments
i must be of type INTEGER.

shift must be of type INTEGER. The absolute value of shift must be less than or equal to siz
Lahey Fortran 90 Language Reference157

Chapter 2 Alphabetical Reference

r

lue of
Optional Arguments

size must be of type INTEGER. The value of size must be positive and must not be greate
than BIT_SIZE (i). If absent, it is as if size were present with the value BIT_SIZE (i).

Result

The result is of type INTEGER and of the same kind as i. Its value is equal to the value of i
with its rightmost size bits circularly shifted left by shift positions.

Example
i = ishftc(13,-2,3) ! i is assigned the value 11

KIND Function

Description

Kind type parameter.

Syntax

KIND (x)

Arguments

x can be of any intrinsic type.

Result

The result is a default scalar INTEGER. Its value is equal to the kind type parmater va
x.

Example
i = kind (0.0) ! i is assigned the value 4

LBOUND Function

Description

Lower bounds of an array or a dimension of an array.
158 Lahey Fortran 90 Language Reference

LEN Function

ciated

imen-
Syntax
LBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disasso
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimension of array.

Result
The result is of type default INTEGER. If dim is present, the result is a scalar with the value
of the lower bound of dim. If dim is absent, the result is an array of rank one with values
corresponding to the lower bounds of each dimension of array.

The lower bound of an array section is always one. The lower bound of a zero-sized d
sion is also always one.

Example
integer, dimension (3,-4:0) :: i
integer :: k,j(2)
j = lbound (i) ! j is assigned the value [1 -4]
k = lbound (i, 2) ! k is assigned the value -4

LEN Function

Description
Length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of characters in string or in
an element of string if string is array-valued.

Example
i = len ('zee') ! i is assigned the value 3
Lahey Fortran 90 Language Reference159

Chapter 2 Alphabetical Reference

SCII

ise
LEN_TRIM Function

Description
Length of a CHARACTER entity without trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of characters in string (or in
an element of string if string is array-valued) minus the number of trailing blanks.

Example
i = len_trim ('zee ') ! i is assigned the value 3
i = len_trim (' ') ! i is assigned the value zero

LGE Function

Description
Test whether a string is lexically greater than or equal to another string based on the A
collating sequence.

Syntax
LGE (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_b precedes string_a in the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherw
the result is false. If both strings are of zero length the result is true.

Example
l = lge('elephant', 'horse') ! l is assigned the
 ! value false
160 Lahey Fortran 90 Language Reference

LGT Function

ing

h the

II col-

ise
LGT Function

Description
Test whether a string is lexically greater than another string based on the ASCII collat
sequence.

Syntax
LGT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_b precedes string_a in the
ASCII collating sequence; otherwise the result is false. If both strings are of zero lengt
result is false.

Example
l = lgt('elephant', 'horse') ! l is assigned the
 ! value false

LLE Function

Description
Test whether a string is lexically less than or equal to another string based on the ASC
lating sequence.

Syntax
LLE (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_a precedes string_b in the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherw
the result is false. If both strings are of zero length the result is true.
Lahey Fortran 90 Language Reference161

Chapter 2 Alphabetical Reference

h the
Example
l = lle('elephant', 'horse') ! l is assigned the

 ! value true

LLT Function

Description
Test whether a string is lexically less than another string based on the ASCII collating
sequence.

Syntax
LLT (string_a, string_b)

Arguments
string_a must be of type default CHARACTER.

string_b must be of type default CHARACTER.

Result
The result is of type default LOGICAL. Its value is true if string_a precedes string_b in the
ASCII collating sequence; otherwise the result is false. If both strings are of zero lengt
result is false.

Example
l = llt('elephant', 'horse') ! l is assigned the

 ! value true

LOG Function

Description
Natural logarithm.

Syntax
LOG (x)

Arguments
x must be of type REAL or COMPLEX. If x is REAL, it must be greater than zero. If x is
COMPLEX, it must not be equal to zero.
162 Lahey Fortran 90 Language Reference

LOG10 Function

f
ge

f
Result
The result is of the same type and kind as x. Its value is equal to a REAL representation o
logex if x is REAL. Its value is equal to the principal value with imaginary part in the ran

 if x is COMPLEX.

Example
x = log (3.7) ! x is assigned the value 1.30833

LOG10 Function

Description
Common logarithm.

Syntax
LOG10 (x)

Arguments
x must be of type REAL. The value of x must be greater than zero.

Result
The result is of the same type and kind as x. Its value is equal to a REAL representation o
log10x.

Example
x = log10 (3.7) ! x is assigned the value 0.568202

LOGICAL Function

Description
Convert between kinds of LOGICAL.

Syntax
LOGICAL (l, kind)

Required Arguments
l must be of type LOGICAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

ω
π– ω π≤<
Lahey Fortran 90 Language Reference163

Chapter 2 Alphabetical Reference

om-

O-

tion

.

Result
The result is of type LOGICAL. If kind is present, the result kind is that of kind; otherwise
it is of default LOGICAL kind. The result value is that of l.

Example
l = logical (.true., 4) ! l is assigned the value

 ! true with kind 4

LOGICAL Statement

Description
The LOGICAL statement declares entities of type LOGICAL.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at c
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a LOGICAL statement.

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute
164 Lahey Fortran 90 Language Reference

LOGICAL Statement

a pro-
e, an

ith

ec-

ed

cat-

mmy

te

.

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in blank common, an allocatable array, a pointer, an external nam
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a LOGICAL statement must not have the EXTERNAL or INTRINSIC attribu
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

Example
logical :: a, b, c ! a, b, and c are of type logical

logical, dimension (2, 4) :: d

 ! d is a 2 by 4 array of logical

logical :: e = .true. ! logical e is initialized
Lahey Fortran 90 Language Reference165

Chapter 2 Alphabetical Reference

-

re the
 that

esult
type

the
 that

MATMUL Function

Description
Matrix multiplication.

Syntax
MATMUL (matrix_a, matrix_b)

Arguments
matrix_a must be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array
valued and of rank one or two if matrix_b is of rank two, and of rank two if matrix_b is of
rank one..

matrix_b must be of numerical type if matrix_a is of numerical type and of type LOGICAL
if matrix_a is of type LOGICAL. It must be array-valued and of rank one or two, if matrix_a
is of rank two, and of rank two if matrix_a is of rank one. The size of the first dimension
must be the same as the size of the last dimension of matrix_a.

Result
If the arguments are of the same numeric type, the result is of that type. If their kinds a
same the result kind is that of the arguments. If their kind is different, the result kind is
of the argument with the greater kind parameter.

If the arguments are of different numeric type and one is of type COMPLEX, then the r
is of type COMPLEX. If the arguments are of different numeric type, and neither is of
COMPLEX, the result is of type REAL.

If the arguments are of type LOGICAL, the result is of type LOGICAL. If their kinds are
same the result kind is that of the arguments. If their kind is different, the result kind is
of the argument with the greater kind parameter.

The value and shape of the result are as follows:

If matrix_a has shape (n, m) and matrix_b has shape (m, k), the result has shape (n, k). Ele-
ment (i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:, j)) if the arguments are
of type LOGICAL.

If matrix_a has shape (m) and matrix_b has shape (m, k), the result has shape (k). Element
(j) of the result has the value SUM(matrix_a(:) * matrix_b(:, j)) if the arguments are of
numeric type and has the value ANY(matrix_a(:) * matrix_b(:, j)) if the arguments are of type
LOGICAL.

If matrix_a has shape (n, m) and matrix_b has shape (m), the result has shape (n). Element
(i, j) of the result has the value SUM(matrix_a(i, :) * matrix_b(:)) if the arguments are of
numeric type and has the value ANY(matrix_a(i, :) * matrix_b(:)) if the arguments are of type
LOGICAL.
166 Lahey Fortran 90 Language Reference

MAX Function

nd

largest
Example
integer a(2,3), b(3), c(2)

a = reshape((/1,2,3,4,5,6/), (/2,3/))

 ! represents |1 3 5|

 |2 4 6|

b = (/1,2,3/) ! represents [1,2,3]

c = matmul(a, b) ! c = [22,28]

MAX Function

Description
Maximum value.

Syntax
MAX (a1, a2, a3, ...)

Arguments
The arguments must be of type INTEGER or REAL and must all be of the same type a
kind.

Result
The result is of the same type and kind as the arguments. Its value is the value of the
argument.

Example
k = max(-14,3,0,-2,19,1) ! k is assigned the value 19

MAXEXPONENT Function

Description
Maximum binary exponent of data type.

Syntax
MAXEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.
Lahey Fortran 90 Language Reference167

Chapter 2 Alphabetical Reference

onent

d

se
Result

The result is a scalar default INTEGER. Its value is the largest permissible binary exp
in the data type of x.

Example
real :: r

integer :: i

i = maxexponent (r) ! i is assigned the value 128

MAXLOC Function

Description

Location of the first element in array having the maximum value of the elements identifie
by mask.

Syntax

MAXLOC (array, dim, mask)

Required Arguments

array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result

The result is of type default INTEGER. If mask is absent, the result is a rank one array who
element values are the values of the subscripts of the first element in array to have the max-
imum value of all of the elements of array. If mask is present, the elements of array for
which mask is false are not considered.

Example
integer, dimension(1) :: i

i = maxloc ((/3,0,4,4/)) ! i is assigned the value [3]

1 dim n≤ ≤
168 Lahey Fortran 90 Language Reference

MAXVAL Function

 true.

.

MAXVAL Function

Description
Maximum value of elements of an array, along a given dimension, for which a mask is

Syntax
MAXVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the maximum value of all the elements of array. If dim is
present, the value of the result is the maximum value of all elements of array along dimen-
sion dim. If mask is present, the elements of array for which mask is false are not considered

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = maxval(m) ! i is assigned 4

j = maxval(m,dim=1) ! j is assigned [2,4]

k = maxval(m,mask=m<3) ! k is assigned 2

MERGE Function

Description
Choose alternative values based on the value of a mask.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey Fortran 90 Language Reference169

Chapter 2 Alphabetical Reference

and

mallest
Syntax
MERGE (tsource, fsource, mask)

Arguments
tsource can be of any type.

fsource must be of the same type and type parameters as tsource.

mask must be of type LOGICAL.

Result
The result is of the same type and type parameters as tsource. Its value is tsource if mask is
true, and fsource otherwise.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

integer, dimension (2,2) :: n = reshape((/3,3,3,3/),(/2,2/))

! m is the array |1 3|

! |2 4|

! n is the array |3 3|

! |3 3|

r = merge(m,n,m<n) ! r is assigned (/1,2,3,3/)

MIN Function

Description
Minimum value.

Syntax
MIN (a1, a2, a3, ...)

Arguments
The arguments must be of type INTEGER or REAL and must all be of the same type
kind.

Result
The result is of the same type and kind as the arguments. Its value is the value of the s
argument.

Example
k = min(-14,3,0,-2,19,1) ! k is assigned the value -14
170 Lahey Fortran 90 Language Reference

MINEXPONENT Function

ary

MINEXPONENT Function

Description
Minimum binary exponent of data type.

Syntax
MINEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the most negative permissible bin
exponent in the data type of x.

Example
real :: r

integer :: i

i = minexponent (r) ! i is assigned the value -126

MINLOC Function

Description
Location of the first element in array having the minimum value of the elements identified
by mask.

Syntax
MINLOC (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

1 dim n≤ ≤
Lahey Fortran 90 Language Reference171

Chapter 2 Alphabetical Reference

se

 true.
Result
The result is of type default INTEGER. If mask is absent, the result is a rank one array who
element values are the values of the subscripts of the first element in array to have the min-
imum value of all of the elements of array. If mask is present, the elements of array for
which mask is false are not considered.

Example
integer, dimension(1) :: i
i = minloc ((/3,0,4,4/)) ! i is assigned the value [2]

MINVAL Function

Description
Minimum value of elements of an array, along a given dimension, for which a mask is

Syntax
MINVAL (array, dim, mask)

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the minimum value of all the elements of array. If dim is
present, the value of the result is the minimum value of all elements of array along dimension
dim. If mask is present, the elements of array for which mask is false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))
! m is the array |1 3|
! |2 4|
i = minval(m) ! i is assigned 1
j = minval(m,dim=1) ! j is assigned [1,3]
k = minval(m,mask=m>3) ! k is assigned 4

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
172 Lahey Fortran 90 Language Reference

MOD Function

nal pro-
y local
MOD Function

Description
Remainder.

Syntax
MOD (a, p)

Arguments
a must be of type INTEGER or REAL.

p must be of the same type and kind as a. Its value must not be zero.

Result
The result is the same type and kind as a. Its value is a - INT(a / p) * p.

Example
r = mod(23.4,4.0) ! r is assigned the value 3.4

i = mod(-23,4) ! i is assigned the value -3

j = mod(23,-4) ! j is assigned the value 3

k = mod(-23,-4) ! k is assigned the value -3

MODULE Statement

Description
The MODULE statement begins a module program unit.

Syntax
MODULE module-name

Where:

module-name is the name of the module.

Remarks
The module name must not be the same as the name of another program unit, an exter
cedure, or a common block within the executable program, nor be the the same as an
name in the module.

In Lahey Fortran, a module program unit must be compiled before it is used.
Lahey Fortran 90 Language Reference173

Chapter 2 Alphabetical Reference

ion.

in a
Example
module m
 implicit none
 type mytype ! mytype available anywhere m is used
 real :: a, b(2,4)
 integer :: n,o,p
 end type mytype
end module m
subroutine zee ()
 use m
 implicit none
 type (mytype) bee, dee
 ...
end subroutine zee

MODULE PROCEDURE Statement

Description
The MODULE PROCEDURE statement specifies that the names in the module-procedure-
list are part of a generic interface.

Syntax
MODULE PROCEDURE module-procedure-list

Where:
module-procedure-list is a list of module procedures accessible by host or use associat

Remarks
A MODULE PROCEDURE statement can only appear in a generic interface block with
module or within a program unit that accesses a module by use association.
174 Lahey Fortran 90 Language Reference

MODULO Function
Example
module names

 implicit none

 interface bill

 module procedure fred, jim

 end interface

 contains

 function fred ()

 ...

 end function fred

 function jim ()

 ...

 end function jim

end module names

MODULO Function

Description
Modulo.

Syntax
MODULO (a, p)

Arguments
a must be of type INTEGER or REAL.

p must be of the same type and kind as a. Its value must not be zero.

Result
The result is the same type and kind as a. If a is a REAL, the result value is a - FLOOR(a /
p) * p. If a is an INTEGER, MODULO(a, p) has the value r such that a = q * p + r, where q
is an INTEGER and r is nearer to zero than p.

Example
r = modulo(23.4,4.0) ! r is assigned the value 3.4

i = modulo(-23,4) ! i is assigned the value 1

j = modulo(23,-4) ! j is assigned the value -1

k - modulo(-23,-4) ! k is assigned the value -3
Lahey Fortran 90 Language Reference175

Chapter 2 Alphabetical Reference

u-

nt.

nt.

ame
MVBITS Subroutine

Description
Copy a sequence of bits from one INTEGER data object to another.

Syntax
MVBITS (from, frompos, len, to, topos)

Arguments
from must be of type INTEGER. It is an INTENT(IN) argument.

frompos must be of type INTEGER and must be non-negative. It is an INTENT(IN) arg
ment. frompos + len must be less than or equal to BIT_SIZE(from).

len must be of type INTEGER and must be non-negative. It is an INTENT(IN) argume

to must be a variable of type INTEGER with the same kind as from. It can be the same vari-
able as from. It is an INTENT(IN OUT) argument. to is set by copying len bits, starting at
position frompos, from from, to to, starting at position topos.

topos must be of type INTEGER and must be non-negative. It is an INTENT(IN) argume
topos + len must be less than or equal to BIT_SIZE(to).

Example
i = 17; j = 3

call mvbits (i,3,3,j,1) ! j is assigned the value 5

NAMELIST Statement

Description
The NAMELIST statement specifies a list of variables which can be referred to by one n
for the purpose of performing input/output.

Syntax
NAMELIST /namelist-name/ namelist-group [[,] /namelist-name/ namelist-group]
...

Where:

namelist-name is the name of a namelist group.

namelist-group is a list of variable names.
176 Lahey Fortran 90 Language Reference

NBREAK Subroutine

on-
a
atable

er in

 using

s, use
Remarks
A name in a namelist-group must not be the name of an array dummy argument with a n
constant bound, a variable with a non-constant character length, an automatic object,
pointer, a variable of a type that has an ultimate component that is a pointer, or an alloc
array.

If a namelist-name has the public attribute, no item in the namelist-group can have the PRI-
VATE attribute.

The order in which the variables appear in a NAMELIST statement determines the ord
which the variables’ values will appear on output.

Example
namelist /mylist/ x, y, z

NBREAK Subroutine

Description
Ignore break interrupts.

Syntax
NBREAK ()

Remarks
The NBREAK subroutine causes the system to ignore break interrupts (<Ctrl-C> or
<Ctrl-Break>) during execution of the program. If a break is received during console
input/output, some data may be lost and an error may result. The error may be trapped
the ERR= or IOSTAT= specifier in the input/output statement.

To return to the system default handling of break interrupts or to capture break interrupt
the BREAK subroutine (see “BREAK Subroutine” beginning on page 75).

Example
call nbreak () ! ignore break interrupts

NDPERR Function

Description
Report floating point exceptions.
Lahey Fortran 90 Language Reference177

Chapter 2 Alphabetical Reference

.

tion

Syntax
NDPERR (lvar)

Arguments
lvar must be of type LOGICAL. If lvar is true, NDPERR clears floating-point exception bits
If lvar is false, NDPERR does not clear floating-point exception bits.

Result
The result is of type default INTEGER. Its value is the INTEGER value of the combina
of the following bits, where a bit set to one indicates an exception has occurred:

Example
exc = ndperr (.true.)

! exc is assigned the bits for floating-point exceptions

! that have occurred. Exception bits are cleared.

NDPEXC Subroutine

Description
Mask all floating point exceptions.

Remarks
To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL
(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc () ! mask floating-point exceptions

Table 10: NDPERR bits

Bit Exception

0 Invalid Operation

1 Denormalized Number

2 Divide by Zero

3 Overflow

4 Underflow
178 Lahey Fortran 90 Language Reference

NEAREST Function

NEAREST Function

Description
Nearest number of a given data type in a given direction.

Syntax
NEAREST (x, s)

Arguments
x must be of type REAL.

s must be of type REAL and must be non-zero.

Result
The result is of the same type and kind as x. Its value is the nearest distinct number, in the
data type of x, from x in the direction of the infinity with the same sign as s.

Example
a = nearest (34.3, -2.0) ! a is assigned 34.2999954223624

NINT Function

Description
Nearest INTEGER.

Syntax
NINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type INTEGER. If kind is present the result kind is kind; otherwise it is the
default INTEGER kind. If a > 0, the result has the value

INT(a + 0.5); if , the result has the value INT(a - 0.5). a 0≤
Lahey Fortran 90 Language Reference179

Chapter 2 Alphabetical Reference

TER
Example
i = nint (7.73) ! i is assigned the value 8

i = nint (-4.2) ! i is assigned the value -4

i = nint (-7.5) ! i is assigned the value -8

i = nint (2.50) ! i is assigned the value 3

NOT Function

Description
Bit-wise logical complement.

Syntax
NOT (i)

Arguments
i must be of type INTEGER.

Result
The result is of the same type and kind as i. Its value is the value of i with each of its bits
complemented (zeros changed to ones and ones changed to zeros).

Example
i = not(5) ! i is assigned the value -6

NULLIFY Statement

Description
The NULLIFY statement disassociates pointers.

Syntax
NULLIFY (pointers)

Where:

pointers is a comma-separated list of variables or structure components having the POIN
attribute.
180 Lahey Fortran 90 Language Reference

OFFSET Function

ence,
Example
real, pointer :: a, b, c
real, target :: t, u, v
a=>t; b=>u; c=>v ! a, b, and c are associated
nullify (a, b, c) ! a, b, and c are disassociated

OFFSET Function

Description
Get the DOS offset portion of the memory address of a variable, substring, array refer
or external subprogram.

Syntax
OFFSET (item)

Arguments
item can be of any type. It is the name for which to return an offset. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the offset portion of the memory address of item.

Example
i = offset(a) ! get the offset portion of the address of a

OPEN Statement

Description
The OPEN statement connects or reconnects an external file and an input/output unit.
Lahey Fortran 90 Language Reference181

Chapter 2 Alphabetical Reference

t

.

 con-
zero

oes
ame
d at

e

 if
 for

the
be
ile
ess.
Syntax
OPEN (connect-specs)

Where:
connect-specs is a comma-separated list of
[UNIT =] external-file-unit
or IOSTAT = iostat
or ERR = label
or FILE = file-name-expr
or STATUS = status
or ACCESS = access
or FORM = form
or RECL = recl
or BLANK = blank
or POSITION = position
or ACTION = action
or DELIM = delim
or PAD = pad
or BLOCKSIZE = blocksize
or CARRIAGECONTROL = carriagecontrol

external-file-unit is a scalar INTEGER expression that evaluates to the input/output uni
number of an external file.

file-name-expr is a scalar CHARACTER expression that evaluates to the name of a file

iostat is a scalar default INTEGER variable that is assigned a positive value if an error
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and
otherwise.

label is the statement label of the statement that is branched to if an error occurs.

status is a scalar default CHARACTER expression. It must evaluate to NEW if the file d
not exist and is to be created; REPLACE if the file is to overwrite an existing file of the s
name or create a new one if the file does not exist; SCRATCH if the file is to be delete
the end of the program or the execution of a CLOSE statement; OLD, if the file is to b
opened but not replaced; and UNKNOWN otherwise. The default is UNKNOWN.

access is a scalar default CHARACTER expression. It must evaluate to SEQUENTIAL
the file is to be connected for sequential access, DIRECT if the file is to be connected
direct access, or TRANSPARENT if the file is to be connected for transparent access. The
default value is SEQUENTIAL

form is a scalar default CHARACTER expression. It must evaluate to FORMATTED if
file is to be connected for formatted input/output, and UNFORMATTED if the file is to
connected for unformatted input/output. The default value is UNFORMATTED, for a f
connected for direct access, and FORMATTED, for a file connected for sequential acc
182 Lahey Fortran 90 Language Reference

OPEN Statement

a file
ential

nk
s
put.

e
is to
wise;

 is

AD-

ers,
d

AD,
ed by

E if
amel-
n
itted

tted
.

s, of

AN
 and

eate a
ertain

ust
recl is a scalar default INTEGER expression. It must evaluate to the record length for
connected for direct access, or the maximum record length for a file connected for sequ
access.

blank is a scalar default CHARACTER expression. It must evaluate to NULL if null bla
control is to be used and ZERO if zero blank control is to be used. The default value i
NULL. This specifier is only permitted for a file being connected for formatted input/out

position is a scalar default CHARACTER expression. It must evaluate to REWIND if th
newly opened sequential access file is to be positioned at its initial point; APPEND if it
be positioned before the endfile record if one exists and at the file terminal point other
and ASIS if the position is to be left unchanged. The default is ASIS.

action is a scalar default CHARACTER expression. It must evaluate to READ if the file
to be connected for input only, WRITE if the file is to be connected for output only, and
READWRITE if the file is to be connected for input and output. The default value is RE
WRITE. Sharing modes may also be specified. The are "DENYBOTH" if the file is for
exclusive use by this unit in this process; "DENYWRITE" if the file may be read by oth
but not written to; "DENYREAD" if the file may be written to by others, but not read; an
"DENYNONE" if the file may be read or written to by others. If both access modes (RE
WRITE, or READWRITE) and sharing modes are to be specified, they must be separat
a comma within the same character expression.

delim is a scalar default CHARACTER expression. It must evaluate to APOSTROPH
the apostrophe will be used to delimit character constants written with list-directed or n
ist formatting, QUOTE if the quotation mark will be used, and NONE if neither quotatio
marks nor apostrophes will be used. The default value is NONE. This specifier is perm
only for formatted files and is ignored on input.

pad is a scalar default CHARACTER expression. It must evaluate to YES if the forma
input record is to be padded with blanks and NO otherwise. The default value is YES

blocksize is a scalar default INTEGER expression. It must evaluate to the size, in byte
the input/output buffer.

carriagecontrol is a scalar default CHARACTER expression. It must evaluate to FORTR
if the first character of a formatted sequential record is to be used for carriage control,
LIST otherwise. Non-storage devices default to FORTRAN; disk files to LIST

Remarks
The OPEN statement can be used to connect an existing file to an input/output unit, cr
file that is preconnected, create a file and connect it to an input/output unit, or change c
characteristics of a connection between a file and an input/output unit.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier m
be the first item in the connect-spec-list.
Lahey Fortran 90 Language Reference183

Chapter 2 Alphabetical Reference

nit is
s

 that

th no

ot be

ing-
turn
ely.
If the file to be connected to the input/output unit is the same as the file to which the u
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifier
can have values different from those currently in effect.

If a file is already connected to an input/output unit, execution of an OPEN statement on
file and a different unit is not permitted.

FILE= is optional if it is the second argument and the first argument is a unit number wi
UNIT=.

Example
open (8, file='info.dat',status='new')

OPTIONAL Statement

Description
The OPTIONAL statement specifies that any of the dummy arguments specified need n
associated with an actual argument when the procedure is invoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:

dummy-arg-names is a comma-separated list of dummy argument names.

Example
subroutine a(b,c)

 real, optional, intent(in) :: c

 ! c need not be provided when calling a

 real, intent(out) :: b

 ...

OVEFL Subroutine

Description
The initial invocation of the OVEFL subroutine masks the overflow interrupt on the float
point unit. lflag must be set to true on the first invocation. Subsequent envocations re
true or false in the lflag variable if the exception has occurred or not occurred, respectiv
184 Lahey Fortran 90 Language Reference

PACK Function

as

t

ize

-

Syntax
OVEFL (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an overflow exception h
occurred, and false otherwise.

Example
call ovefl (lflag) ! mask the overflow interrupt

PACK Function

Description
Pack an array into a vector under control of a mask.

Syntax
PACK (array, mask, vector)

Required Arguments
array can be of any type. It must not be scalar.

mask must be of type LOGICAL and must be conformable with array.

Optional Arguments
vector must be of the same type and kind as array and must have rank one. It must have a
least as many elements as there are true elements in array. If mask is scalar with value true,
vector must have at least as many elements as array.

Result
The result is an array of rank one with the same type and kind as array. If vector is present,
the result size is the size of vector. If vector is absent, the result size is the number of true
elements in mask unless mask is scalar with the value true, in which case the size is the s
of array.

The value of element i of the result is the ith true element of mask, in array-element order. If
vector is present and is larger than the number of true elements in mask, the elements of the
result beyond the number of true elements in mask are filled with values from the correspond
ing elements of vector.
Lahey Fortran 90 Language Reference185

Chapter 2 Alphabetical Reference
Example
integer, dimension(3,3) :: c
c = reshape((/0,3,2,4,3,2,5,1,2/),(/3,3/))
! represents the array |0 4 5|
! |3 3 1|
! |2 2 2|
integer, dimension(6) :: d
integer, dimension(9) :: e
d = pack(c,mask=c.ne.2)! d is assigned [0 3 4 3 5 1]
e = pack(c,mask=.true.)! e is assigned [0 3 2 4 3 2 5 1 2]

PARAMETER Statement

Description
The PARAMETER statement specifies named constants.

Syntax
PARAMETER (named-constant-defs)

Where:
named-constant-defs is a comma separated list of constant-name = init-expr

constant-name is the name of a constant being specified.

init-expr is an expression that can be evaluated at compile time.

Remarks
Each named constant becomes defined with the value of init-expr.

Example
parameter (freezing_point = 32.0, conv_factor = 9/5)

PAUSE Statement (obsolescent)

Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE [pause-code]

Where:
pause-code is a scalar CHARACTER constant or a series of 1 to 5 digits.
186 Lahey Fortran 90 Language Reference

Pointer Assignment Statement

e or

d type
Remarks
When a PAUSE statement is reached, the optional pause-code and the string "Press enter

to continue " are displayed. The program resumes execution when the <ENTER> key is
pressed.

Example
pause !"Press enter to continue" is displayed

Pointer Assignment Statement

Description
The pointer assignment statement associates a pointer with a target.

Syntax
pointer => target

Where:
pointer is a variable having the POINTER attribute.

target is a variable or expression having the TARGET attribute or the POINTER attribut
a subobject of a variable having the TARGET attribute.

Remarks
If target is not a pointer, pointer becomes associated with target. If target is a pointer that is
associated, pointer becomes associated with the same object as target. If target is disassoci-
ated, pointer becomes disassociated. If target’s association status is undefined, pointer’s
also becomes undefined.

Pointer assignment of a pointer component of a structure can also take place by derive
intrinsic assignment or by a defined assignment.

A pointer also becomes associated with a target through allocation of the pointer.

Any previous association between pointer and a target is broken.

target must be of the same type, kind, and rank as pointer.

target must not be an array section with a vector subscript.

If target is an expression, it must deliver a pointer result.

Example
real, pointer :: a
real, target :: b = 5.0
a => b ! a is an alias for b
Lahey Fortran 90 Language Reference187

Chapter 2 Alphabetical Reference

ram.

.

rough

ave
POINTER Function

Description
Get the memory address of a variable, substring, array reference, or external subprog

Syntax
POINTER (item)

Arguments
item can be of any type. It is the name for which to return an address. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the address of item.

Example
i = pointer(a) ! get the address of a

POINTER Statement

Description
The POINTER statement specifies a list of variables that have the POINTER attribute

Syntax
POINTER [::] variable-name [(deferred-shape)] [, variable-name [(deferred-
shape)]] ...

Where:

variable-name is the name of a variable.

deferred-shape is : [, :] ... where the number of colons is equal to the rank of variable-name.

Remarks
A pointer must not be referenced or defined unless it is first associated with a target th
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified for variable-name.

If the DIMENSION attribute is specified elsewhere in the scoping unit, the array must h
a deferred shape.
188 Lahey Fortran 90 Language Reference

PRECFILL Subroutine

e

ter

ts of
Example
real :: next, previous, value

pointer :: next, previous

PRECFILL Subroutine

Description
Set fill character for numeric fields that are wider than supplied numeric precision. Th
default is ’0’.

Syntax
PRECFILL (filchar)

Arguments
filchar must be of type CHARACTER. It is an INTENT(IN) argument whose first charac
becomes the new precision fill character.

Example
call precfill(’*’) ! ’*’ is the new precision fill character

PRECISION Function

Description
Decimal precision of data type.

Syntax
PRECISION (x)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of type default INTEGER. Its value is equal to the number of decimal digi
precision in the data type of x.
Lahey Fortran 90 Language Reference189

Chapter 2 Alphabetical Reference

ears.

ond-
n
Example

i = precision (4.2) ! i is assigned the value 6

PRESENT Function

Description

Determine whether an optional argument is present.

Syntax

PRESENT (a)

Arguments

a must be an optional argument of the procedure in which the PRESENT function app

Result

The result is a scalar default LOGICAL. Its value is true if the actual argument corresp
ing to a was provided in the invocation of the procedure in which the PRESENT functio
appears and false otherwise.

Example

call zee(a, b)

...

subroutine zee (x,y,z)

 implicit none

 real, intent(in out) :: x, y

 real, intent (in), optional :: z

r = present(z) ! r is assigned the value false

PRINT Statement

Description

The PRINT statement transfers values from an output list to an input/output unit.
190 Lahey Fortran 90 Language Reference

PRINT Statement

R-

le-

the
Syntax
PRINT format [, outputs]

Where:
format is format-expr
or label
or *
or assigned-label

format-expr is a default CHARACTER expression that evaluates to ([format-items])

label is a statement label of a FORMAT statement.

assigned-label is a scalar default INTEGER variable that was assigned the label of a FO
MAT statement in the same scoping unit.

outputs is a comma-separated list of expr
or io-implied-do

expr is an expression.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or doub
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

format-items is a comma-separated list of [r]data-edit-descriptor, control-edit-descriptor, or
char-string-edit-descriptor, or [r] (format-items)

data-edit-descriptor is Iw[.m]
or Bw[.m]
or Ow[.m]
or Zw[.m]
or Fw.d
or Ew.d[Ee]
or ENw.d[Ee]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw
or A[w]
or Dw.d

w, m, d, and e are INTEGER literal constants that represent field width, digits, digits after
decimal point, and exponent digits, respectively
Lahey Fortran 90 Language Reference191

Chapter 2 Alphabetical Reference

repe-

rray-

ts are

or

riptor;

ust
ence of
control-edit-descriptor is Tn
or TLn
or TRn
or nX
or S
or SP
or SS
or BN
or BZ
or [r] /
or :
or kP

char-string-edit-descriptor is a CHARACTER literal constant or cHrep-chars

rep-chars is a string of characters

c is the number of characters in rep-chars

r, k, and n are positive INTEGER literal constants that are used to specify a number of
titions of the data-edit-descriptor, char-string-edit-descriptor, control-edit-descriptor, or
(format-items)

Remarks
The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements are specified in a
element order.

If a derived type object appears as an output item, it is treated as if all of the componen
specified in the same order as in the definition of the derived type.

The comma used to separate items in format-items can be omitted between a P edit descript
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit desc
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if an apostrophe or quotation mark appears, it m
be as a consecutive pair without any blanks. Each such pair represents a single occur
the delimiter character.

Example
 print*,"hello world"

 print 100, i,j,k

100 format (3i8)
192 Lahey Fortran 90 Language Reference

PRIVATE Statement

 the

ears
o pri-

ived
ion,
PRIVATE Statement

Description
The PRIVATE statement specifies that the names of entities are accessible only within
current module.

Syntax
PRIVATE [[::] access-ids]

Where:
access-ids is a comma-separated list of
use-name
or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PRIVATE statement is permitted only in a module. If the PRIVATE statement app
without a list of objects, it sets the default accessibility of named items in the module t
vate. Otherwise, it makes the accessibility of the objects specified private.

If the PRIVATE statement appears in a derived type definition, the entities within the der
type definition are accessible only in the current module. Within a derived type definit
the PRIVATE statement must not appear with a list of access-ids.

Example
module ex
 implicit none
 public ! default accessibility is public
 real :: a, b, c
 private a ! a is not accessible outside module
 ! b and c are accessible outside module
 type zee
 private
 integer :: l,m ! l and m are private
 end type zee
end module ex
Lahey Fortran 90 Language Reference193

Chapter 2 Alphabetical Reference
PRODUCT Function

Description
Product of elements of an array, along a given dimension, for which a mask is true.

Syntax
PRODUCT (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL or COMPLEX. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the product of the values of all the elements of array. If
dim is present, the value of the result is the product of the values of all elements of array
along dimension dim. If mask is present, the elements of array for which mask is false are
not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = product(m) ! i is assigned 24

j = product(m,dim=1) ! j is assigned [2,12]

k = product(m,mask=m>2) ! k is assigned 12

PROGRAM Statement

Description
The PROGRAM statement specifies a name for the main program unit.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
194 Lahey Fortran 90 Language Reference

PROMPT Subroutine

he
 pro-

pt

e mod-
Syntax

PROGRAM program-name

Where:

program-name is the name given to the main program.

Remarks

program-name is global to the entire executable program. It must not be the same as t
name of another program unit, external procedure, or common block in the executable
gram, nor the same as any local name in the main program.

Example
program zyx

PROMPT Subroutine

Description

Set prompt for subsequent READ statements. Fortran default is no prompt.

Syntax

PROMPT (message)

Arguments

message must be of type CHARACTER. It is an INTENT(IN) argument that is the prom
for subsequent READ statements.

Example
call prompt(’?’) ! ? is the new READ prompt

PUBLIC Statement

Description

The PUBLIC statement specifies that the names of entities are accessible anywhere th
ule in which the PUBLIC statement appears is used.
Lahey Fortran 90 Language Reference195

Chapter 2 Alphabetical Reference

es in
s the
cces-
Syntax
PUBLIC [[::] access-ids]

Where:
access-ids is a comma-separated list of use-name
or generic-spec

use-name is a name previously declared in the module.

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
The PUBLIC statement is permitted only in a module. The default accessibility of nam
a module is public. If the PUBLIC statement appears without a list of objects, it confirm
default accessibility. If a list of objects is present, the PUBLIC statement makes the a
sibility of the objects specified public.

Example
module zee
 implicit none
 private ! default accessibility is now private
 real :: a, b, c
 public a ! a is now accessible outside module
end module zee

RADIX Function

Description
Number base of the physical representation of a number.

Syntax
RADIX (x)

Arguments
x must be of type INTEGER or REAL.
196 Lahey Fortran 90 Language Reference

RANDOM_NUMBER Subroutine

al rep-

an
d in

o

t to
an this
Result
The result is a default INTEGER scalar whose value is the number base of the physic
resentation of x. In Lahey Fortran 90 this value is two for all kinds of INTEGERs and
REALs.

Example
i = radix(2.3) ! i is assigned the value 2

RANDOM_NUMBER Subroutine

Description
Uniformly distributed pseudorandom number or numbers in the range .

Syntax
RANDOM_NUMBER (harvest)

Arguments
harvest must be of type REAL. It is an INTENT(OUT) argument. It can be a scalar or
array variable. Its value is one or several pseudorandom numbers uniformly distribute
the range .

Example
real, dimension(8) :: x
call random_number(x) ! each element of x is assigned
 ! a pseudorandom number

RANDOM_SEED Subroutine

Description
Set or query the pseudorandom number generator used by RANDOM_NUMBER. If n
argument is present, the processor sets the seed to a predetermined value.

Syntax
RANDOM_SEED (size, put, get)

Optional Arguments
size must be a scalar of type default INTEGER. It is an INTENT(OUT) variable. It is se
the number of default INTEGERs the processor uses to hold the seed. For Lahey Fortr
value is two.

0 x 1<≤

0 x 1<≤
Lahey Fortran 90 Language Reference197

Chapter 2 Alphabetical Reference

d.

 in an
put must be a default INTEGER array of rank one and size greater than or equal to size. It is
an INTENT(IN) argument and is used by the processor to set the seed value.

get must be a default INTEGER array of rank one and size greater than or equal to size. It is
an INTENT(OUT) argument and is set by the processor to the current value of the see

Exactly one or zero arguments must be present.

Example
call random_seed ! initialize the generator

call random_seed(size=k) ! k set to size of seed

call random_seed(put=seed(1:k)) ! set user seed

call random_seed(get=old(1:k)) ! get current seed

RANGE Function

Description
Decimal range of the data type of a number.

Syntax
RANGE (x)

Arguments
x must be of numeric type.

Result
The result is a scalar default INTEGER. If x is of type INTEGER, the result value is INT
(LOG10 (huge)), where huge is the largest positive integer in the data type of x. If x is of type
REAL or COMPLEX, the result value is INT (MIN (LOG10 (huge), - LOG10 (tiny))), where
huge and tiny are the largest and smallest positive numbers in the data type of x.

Example
i = range(4.2) ! i is assigned the value 37

READ Statement

Description
The READ statement transfers values from an input/output unit to the entities specified
input list or a namelist group.
198 Lahey Fortran 90 Language Reference

READ Statement

le-

ondi-
ro

con-

ition
Syntax
READ (io-control-specs) [inputs]

or
READ format [, inputs]

Where:
inputs is a comma-separated list of variable
or io-implied-do

variable is a variable.

io-implied-do is (inputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or doub
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC = record
or IOSTAT = stat
or ERR = errlabel
or END = endlabel
or EOR = eorlabel
or ADVANCE = advance
or SIZE = size

io-unit is an external file unit
or *

format is a format specification (see “Input/Output Editing” beginning on page 24).

namelist-group-name is the name of a namelist group.

record is the number of the direct access record that is to be read.

stat is a scalar default INTEGER variable that is assigned a positive value if an error c
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and ze
otherwise.

errlabel is a label that is branched to if an error condition occurs and no end-of-record
dition or end-of-file condition occurs during execution of the statement.

endlabel is a label that is branched to if an end-of-file condition occurs and no error cond
occurs during execution of the statement.
Lahey Fortran 90 Language Reference199

Chapter 2 Alphabetical Reference

 con-

cing
ue is

ns-
tput

or-
r.
ith
eorlabel is a label that is branched to if an end-of-record condition occurs and no error
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advan
input/output is to occur, and YES if advancing input/output is to occur. The default val
YES.

size is a scalar default INTEGER variable that is assigned the number of characters tra
ferred by data edit descriptors during execution of the current non-advancing input/ou
statement.

Remarks
io-control-specs must contain exactly one io-unit, and must not contain both a format and a
namelist-group-name.

A namelist-group-name must not appear if inputs is present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FMT= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit f
mat specification (format-expr) whose control list does not contain an internal file specifie
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear w
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

Example
read*, a,b,c ! read into a, b, and c using list-

 ! directed i/o

read (3, fmt= "(e7.4)") x

 ! read in x from unit 3 using e format

read 10, i,j,k

 ! read in i, j, and k using format at

 ! label 10
200 Lahey Fortran 90 Language Reference

REAL Function

om-

O-
REAL Function

Description
Convert to REAL type.

Syntax
REAL (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type REAL. If kind is present, the kind is that specified by kind. The result’s
value is a REAL representation of a. If a is of type COMPLEX, the result’s value is a REAL
representation of the real part of a.

Example
b = real(-3) ! b is assigned the value -3.0

REAL Statement

Description
The REAL statement declares entities of type REAL.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selector is ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expr is a scalar INTEGER expression that can be evaluated at c
pile time.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]
Lahey Fortran 90 Language Reference201

Chapter 2 Alphabetical Reference

tion

.

a pro-
me, an
array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a REAL statement.

function-name must be the name of an external, intrinsic, or statement function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in a blank common, an allocatable array, a pointer, an external na
intrinsic name, or an automatic object.
202 Lahey Fortran 90 Language Reference

REPEAT Function

ith

ec-

ed

cat-

mmy

ec-

.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a REAL statement must not have the EXTERNAL or INTRINSIC attribute sp
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

An entity must not be explicitly given any attribute more than once in a scoping unit.

Example
real :: a, b, c ! a, b, and c are of type real

real, dimension (2, 4) :: d

 ! d is a 2 by 4 array of real

real :: e = 2.0 ! real e is initialized

REPEAT Function

Description
Concatenate copies of a string.
Lahey Fortran 90 Language Reference203

Chapter 2 Alphabetical Reference

sitive

-
t

f
Syntax
REPEAT (string, ncopies)

Arguments
string must be scalar and of type CHARACTER

ncopies must be a scalar non-negative INTEGER.

Result
The result is a scalar of type CHARACTER with length equal to ncopies times the length of
string. Its value is equal to the concatenation of ncopies copies of string.

Example
character (len=6) :: n
n = repeat('ho',3) ! n is assigned the value 'hohoho'

RESHAPE Function

Description
Construct an array of a specified shape from a given array.

Syntax
RESHAPE (source, shape, pad, order)

Required Arguments
source can be of any type and must be array-valued. If pad is absent or of size zero, the size
of source must be greater than or equal to the product of the values of the elements of shape.

shape must be an INTEGER array of rank one and of constant size. Its size must be po
and less than or equal to seven. It must not have any negative elements.

Optional Arguments
pad must be array-valued and of the same type and type parameters as source.

order must be of type INTEGER and of the same shape as shape. Its value must be a permu
tation of (1, 2, ..., n), where n is the size of shape. If order is absent, it is as if it were presen
with the value (1, 2, ..., n).

Result
The result is an array of shape shape with the same type and type parameters as source. The
elements of the result, taken in permuted subscript order, order(1), ..., order(n), are those of
source in array element order followed if necessary by elements of one or more copies opad
in array element order.
204 Lahey Fortran 90 Language Reference

RETURN Statement

 to the

e
rans-
Example
x = reshape((/1,2,3,4/), (/3,2/), pad=(/0/))
 ! x is assigned |1 4|
 ! |2 0|
 ! |3 0|

RETURN Statement

Description
The RETURN statement completes execution of a procedure and transfers control back
statement following the procedure invocation.

Syntax
RETURN [scalar-int-expr]

Where:
scalar-int-expr is a scalar INTEGER expression.

Remarks
If scalar-int-expr is present and has a value n between 1 and the number of asterisks in th
subprogram's dummy argument list, the CALL statement that invoked the subroutine t
fers control to the statement identified by the nth alternate return specifier in the actual
argument list.

Example
subroutine zee (a, b)
 implicit none
 real, intent(in out) :: a, b
 ...
 if (a>b) then
 return ! subroutine completed
 else
 a=a*b
 return ! subroutine completed
 end if
end subroutine zee

REWIND Statement

Description
The REWIND statement positions the specified file at its initial point.
Lahey Fortran 90 Language Reference205

Chapter 2 Alphabetical Reference

ber

on of

n

Syntax
REWIND unit-number

or
REWIND (position-spec-list)

Where:
unit-number is a scalar INTEGER expression corresponding to the input/output unit num
of an external file.

position-spec-list is [[UNIT =] unit-number][, ERR = label][, IOSTAT = stat] where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, then unit-number
must be first.

label is a statement label that is branched to if an error condition occurs during executi
the statement.

stat is a variable of type INTEGER that is assigned a positive value if an error conditio
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
Rewinding a file that is connected but does not exist has no effect.

Example
rewind 10 ! file connected to unit 10 rewound
rewind (10, err = 100)
 ! file connected to unit 10 rewound
 ! on error goto label 100

RRSPACING Function

Description
Reciprocal of relative spacing near a given number.

Syntax
RRSPACING (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is the reciprocal of the spacing, nearx,
of REAL numbers of the kind of x.
206 Lahey Fortran 90 Language Reference

SAVE Statement

, allo-

of the

mmy

must
Example
r = rrspacing(-4.7) ! r is assigned the value 0.985662E+07

SAVE Statement

Description
The SAVE statement specifies that all objects in the statement retain their association
cation, definition, and value after execution of a RETURN or END statement of a
subprogram.

Syntax
SAVE [[::] saved-entities]

Where:

saved-entites is a comma-separated list of object-name

or / common-block-name /

object-name is the name of a data object.

common-block-name is the name of a common block.

Remarks
Objects declared with the SAVE attribute in a subprogram are shared by all instances
subprogram.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without a saved-entities list specifies that all allowable objects in the
scoping unit have the SAVE attribute.

If a common block is specified in a SAVE statement other than in the main program, it
be specified in every scoping unit in which it appears except in the main program.

A SAVE statement in the main program has no effect.

Example
save i,j,/myblock/,k ! i,j,k and common block

 ! myblock have the save

 ! attribute
Lahey Fortran 90 Language Reference207

Chapter 2 Alphabetical Reference

er of
SCALE Function

Description
Multiply a number by a power of two.

Syntax
SCALE (x, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
The result is of the same type and kind as x. Its value is .

Example
x = scale(1.5,3) ! x is assigned the value 12.0

SCAN Function

Description
Scan a string for any one of a set of characters.

Syntax
SCAN (string, set, back)

Required Arguments
string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments
back must be of type LOGICAL.

Result
The result is of type default INTEGER. If back is absent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
in set. If back is present with the value true, the value of the result is the position numb
the rightmost character in string that is in set.

x 2i×
208 Lahey Fortran 90 Language Reference

SEGMENT Function

rence,

at,
ct to
Example
i = scan ("Lalalalala","la") ! i is assigned the
 ! value 2
i = scan ("LalalaLALA","la",back=.true.)
 ! i is assigned the
 ! value 6

SEGMENT Function

Description
Get the DOS segment portion of the memory address of a variable, substring, array refe
or external subprogram.

Syntax
SEGMENT (item)

Arguments
item can be of any type. It is the name for which to return a segment. item must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the segment portion of the memory address of item.

Example
i = segment(a) ! get the segment portion of the address of a

SELECT CASE Statement

Description
The SELECT CASE statement begins a CASE construct. It contains an expression th
when evaluated, produces a case index. The case index is used in the CASE constru
determine which block in a CASE construct, if any, is executed.

Syntax
[construct-name :] SELECT CASE (case-expr)

Where:
construct-name is an optional name for the CASE construct.

case-expr is a scalar expression of type INTEGER, LOGICAL, or CHARACTER.
Lahey Fortran 90 Language Reference209

Chapter 2 Alphabetical Reference

ASE
t

eter

 the
.

Remarks
If the SELECT CASE statement is identified by a construct-name, the corresponding END
SELECT statement must be identified by the same construct name. If the SELECT C
statement is not identified by a construct-name, the corresponding END SELECT statemen
must not be identified by a construct name. If a CASE statement is identified by a construct-
name, the corresponding SELECT CASE statement must specify the same construct-name.

Example
select case (i+j)
 case (:-1)
 ... ! executed if i+j<0
 case (0)
 ... ! executed if i+j==0
 case (1,4,7)
 ... ! executed if i+j==(1 or 4 or 7)
 case default
 ... ! executed if none of the other case
 ! selectors match i+j
end select

SELECTED_INT_KIND Function

Description
Kind type parameter of an INTEGER data type that represents all integer values n with

.

Syntax
SELECTED_INT_KIND (r)

Arguments
r must be a scalar INTEGER.

Result
The result is a scalar of type default INTEGER. Its value is equal to the kind type param
of the INTEGER data type that accomodates all values n with . If no such
kind is available, the result is -1. If more than one kind is available, the return value is
value of the kind type parameter of the kind with the smallest decimal exponent range

Example
integer (kind=selected_int_kind(3)) :: i,j
! i and j are of a data type with a decimal range of
! at least -1000 to 1000

10– r
n 10r< <

10– r
n 10r< <
210 Lahey Fortran 90 Language Reference

SELECTED_REAL_KIND Function

eter

le,
vail-
est

at the

uence
SELECTED_REAL_KIND Function

Description
Kind type parameter of a REAL data type with decimal precision of at least p digits and a
decimal exponent range of at least r.

Syntax
SELECTED_REAL_KIND (p, r)

Optional Arguments
p must be a scalar INTEGER.

r must be a scalar INTEGER.

Result
The result is a scalar of type default INTEGER. Its value is equal to the kind type param
of the REAL data type with decimal precision of at least p digits and a decimal exponent
range of at least r. If no such kind is available the result is -1 if the precision is not availab
-2 if the range is not available, and -3 if neither is available. If more than one kind is a
able, the return value is the value of the kind type parameter of the kind with the small
decimal precision.

Example
real, (kind=selected_real_kind(3,3)) :: a,b

! a and b are of a data type with a decimal range of

! at least -1000 to 1000 and a precision of at least

! 3 decimal digits

SEQUENCE Statement

Description
The SEQUENCE statement can only appear in a derived type definition. It specifies th
order of the component definitions is the storage sequence for objects of that type.

Syntax
SEQUENCE

Remarks
If a derived type definition contains a SEQUENCE statement, the derived type is a seq
type.
Lahey Fortran 90 Language Reference 211

Chapter 2 Alphabetical Reference

po-

d-size
cated.
If SEQUENCE is present in a derived type definition, all derived types specified in com
nent definitions must be sequence types.

Example
type zee
 sequence ! zee is a sequence type
 real :: a,b,c ! a,b,c is the storage sequence for zee
end type zee

SET_EXPONENT Function

Description
Model representation of a number with exponent part set to a power of two.

Syntax
SET_EXPONENT (x, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
The result is of the same type and kind as x. Its value is the FRACTION(x)*2i.

Example
a = set_exponent (4.6, 2) ! a is assigned 2.3

SHAPE Function

Description
Shape of an array.

Syntax
SHAPE (source)

Arguments
source can be of any type and can be array-valued or scalar. It must not be an assume
array. It must not be a pointer that is disassociated or an allocatable array that is not allo
212 Lahey Fortran 90 Language Reference

SIGN Function
Result
The result is a default INTEGER array of rank one whose size is the rank of source and whose
value is the shape of source.

Example
i = shape(b(1:9,-2:3,10))! i is assigned the value

 ! (/9,6,10/)

SIGN Function

Description
Transfer of sign.

Syntax
SIGN (a, b)

Arguments
a must be of type INTEGER or REAL.

b must be of the same type and kind as a.

Result
The result is of the same type and kind as a. Its value is the , if b is greater than or equal
to zero; and , if b is less than zero.

Example
a = sign (30,-2) ! a is assigned the value -30

SIN Function

Description
Sine.

Syntax
SIN (x)

Arguments
x must be of type REAL or COMPLEX.

a
a–
Lahey Fortran 90 Language Reference213

Chapter 2 Alphabetical Reference

-

r-

ociated
Result
The result is of the same type and kind as x. Its value is a REAL or COMPLEX representa
tion of the sine of x.

Example
r = sin(.5) ! r is assigned the value 0.479426

SINH Function

Description
Hyperbolic sine.

Syntax
SINH (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is a REAL representation of the hype
bolic sine of x.

Example
r = sinh(.5) ! r is assigned the value 0.521095

SIZE Function

Description
Size of an array or a dimension of an array.

Syntax
SIZE (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disass
or an allocatable array that is not allocated.
214 Lahey Fortran 90 Language Reference

SPACING Function

e

on.
Optional Arguments
dim must of type INTEGER and must be a dimension of array. If array is assumed-size, dim
must be present and less than the rank of array

Result
The result is a scalar of type default INTEGER. If dim is present, the result is the extent of
dimension dim of array. If dim is absent, the result is the number of elements in array.

Example
integer, dimension (3,-4:0) :: i

integer :: k,j

j = size (i) ! j is assigned the value 15

k = size (i, 2) ! k is assigned the value 5

SPACING Function

Description
Absolute spacing near a given number.

Syntax
SPACING (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kind as x. Its value is the spacing of REAL values, of th
kind of x, near x.

Example
x = spacing(4.7) ! x is assigned the value 0.476837E-06

SPREAD Function

Description
Adds a dimension to an array by adding copies of a data object along a given dimensi
Lahey Fortran 90 Language Reference215

Chapter 2 Alphabetical Reference

 seven.

e

al

-
sult is
Syntax
SPREAD (source, dim, ncopies)

Arguments
source can be of any type and can be scalar or array-valued. Its rank must be less than

dim must be a scalar of type INTEGER with a value in the range , whern
is the rank of source.

ncopies must be a scalar of type INTEGER.

Result
The result is an array of the same type and kind as source and of rank n + 1, where n is the
rank of source. If source is scalar, the shape of the result is MAX(ncopies, 0) and each ele-
ment of the result has a value equal to source. If source is array-valued with shape (d1, d2, ...,
dn), the shape of the result is (d1, d2, ..., ddim-1, MAX(ncopies, 0), ddim-1, ..., dn) and the element
of the result with subscripts (r1, r2, ..., rn+1) has the value source(r1, r2, ..., rdim-1, rdim+1, ..., rn+1).

Example
real, dimension(2) :: b=(/1,2/)

real, dimension(2,3) :: a

a = spread(b,2,3) ! a is assigned |1 1 1|

 |2 2 2|

SQRT Function

Description
Square Root.

Syntax
SQRT (x)

Arguments
x must be of type REAL or COMPLEX. If x is REAL, its value must be greater than or equ
to zero.

Result
The result is of the same kind and type as x. If x is of type REAL, the result value is a REAL
representation of the square root of x. If x is of type COMPLEX, the result value is the prin
cipal value with the real part greater than or equal to zero. When the real part of the re
zero, the imaginary part is greater than or equal to zero.

1 dim n 1+≤ ≤
216 Lahey Fortran 90 Language Reference

Statement Function Statement

 ele-
s.

 being

nt
 the
Example
x = sqrt(16.0) ! x is assigned the value 4.0

Statement Function Statement

Description
A statement function is a function defined by a single statement.

Syntax
function-name ([dummy-args]) = scalar-expr

Where:
function-name is the name of the function being defined.

dummy-args is a comma-separated list of dummy argument names.

scalar-expr is a scalar expression.

Remarks
scalar-expr can be composed only of literal or named constants, scalar variables, array
ments, references to functions and function dummy procedures, and intrinsic operator

If a reference to a statement function appears in scalar-expr, its definition must have been
provided earlier in the scoping unit and must not be the name of the statement function
defined.

Each scalar variable reference in scalar-expr must be either a reference to a dummy argume
of the statement function or a reference to a variable local to the same scoping unit as
statement function statement.

The dummy arguments have a scope of the statement function statement.

A statement function must not be supplied as a procedure argument.

Example
mean(a,b) = (a + b) / 2
c = mean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement

Description
The STOP statement terminates execution of the program.
Lahey Fortran 90 Language Reference217

Chapter 2 Alphabetical Reference

y

self
VE
ctly
ed by
Syntax
STOP [stop-code]

Where:

stop-code is a scalar CHARACTER constant or a series of 1 to 5 digits.

Remarks
When a STOP statement is reached, the optional stop-code is displayed.

Example
if (a>b) then

 stop ! program execution terminated

end if

SUBROUTINE Statement

Description
The SUBROUTINE statement begins a subroutine subprogram and specifies its dumm
argument names and whether it is recursive.

Syntax

[RECURSIVE] SUBROUTINE subroutine-name ([dummy-arg-names])

Where:

subroutine-name is the name of the subroutine.

dummy-arg-names is a comma-separated list of dummy argument names.

Remarks
The keyword RECURSIVE must be present if the subroutine directly or indirectly calls it
or a subroutine defined by an ENTRY statement in the same subprogram. RECURSI
must also be present if a subroutine defined by an ENTRY statement directly or indire
calls itself, another subroutine defined by an ENTRY statement, or the subroutine defin
the SUBROUTINE statement.

Example
subroutine zee (bar1, bar2)
218 Lahey Fortran 90 Language Reference

SUM Function

.

SUM Function

Description
Sum of elements of an array, along a given dimension, for which a mask is true.

Syntax
SUM (array, dim, mask)

Required Arguments
array must be of type INTEGER, REAL, or COMPLEX. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the range , where n is the rank of array. The
corresponding dummy argument must not be an optional dummy argument.

mask must be of type LOGICAL and must be conformable with array.

Result
The result is of the same type and kind as array. It is scalar if dim is absent or if array has
rank one; otherwise the result is an array of rank n-1 and of shape

 where is the shape of array. If dim
is absent, the value of the result is the sum of the values of all the elements of array. If dim
is present, the value of the result is the sum of the values of all elements of array along dimen-
sion dim. If mask is present, the elements of array for which mask is false are not considered

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/2,2/))

! m is the array |1 3|

! |2 4|

i = sum(m) ! i is assigned 10

j = sum(m,dim=1) ! j is assigned [3,7]

k = sum(m,mask=m>2) ! k is assigned 7

SYSTEM Subroutine

Description
Execute a DOS command as if from the DOS command line.

1 dim n≤ ≤

d1 d2 … ddim 1– ddim 1+ … dn, , , , , ,() d1 d2 … dn, , ,()
Lahey Fortran 90 Language Reference219

Chapter 2 Alphabetical Reference

 DOS
rams

s

nt.
lock.

nt.
Syntax
SYSTEM (cmd)

Arguments
cmd must be of type CHARACTER. Its length must not be greater than 122. It is an
INTENT(IN) argument that is a DOS command to be executed as if it were typed on the
command line. Use of the SYSTEM subroutine for invocation of protected-mode prog
is not supported.

Example
call system("dir > current.dir")

! puts a listing of the current directory into

! the file ’current.dir’

SYSTEM_CLOCK Subroutine

Description
INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK (count, count_rate, count_max)

Optional Arguments
count must be a scalar of type default INTEGER. It is an INTENT (OUT) argument. It
value is set to the current value of the processor clock or to

-HUGE(0) if no clock is available.

count_rate must be a scalar of type default INTEGER. It is an INTENT (OUT) argume
It is set to the number of processor clock counts per second, or to zero if there is no c

count_max must be a scalar of type default INTEGER. It is an INTENT (OUT) argume
It is set to the maximum value that count can have, or zero if there is no clock.

Example
call system_clock(c, cr, cm) ! c is set to current

 ! value of processor

 ! clock. cr is set to

 ! the count_rate, and cm

 ! is set to the

 ! count_max
220 Lahey Fortran 90 Language Reference

TAN Function

nt

r-
TAN Function

Description

Tangent.

Syntax

TAN (x)

Arguments

x must be of type REAL.

Result

The result is of the same type and kind as x. Its value is a REAL representation of the tange
of x.

Example

r = tan(.5) ! r is assigned the value 0.546302

TANH Function

Description

Hyperbolic tangent.

Syntax

TANH (x)

Arguments

x must be of type REAL.

Result

The result is of the same type and kind as x. Its value is a REAL representation of the hype
bolic tangent of x.
Lahey Fortran 90 Language Reference221

Chapter 2 Alphabetical Reference

d thus

psed
Example
r = tanh(.5) ! r is assigned the value 0.462117

TARGET Statement

Description
The TARGET statement specifies a list of object names that have the target attribute an
can have pointers associated with them.

Syntax
TARGET [::] object-name [(array-spec)] [, object-name [(array-spec)]] ...

Where:
object-name is the name of a data object.

array-spec is an array specification.

Example
target a,b,c ! a,b, and c have the target attribute

TIMER Subroutine

Description
Hundredths of seconds elapsed since midnight.

Syntax
TIMER (iticks)

Arguments
iticks must be of type default INTEGER. It is assigned the hundredths of a second ela
since midnight on the system clock.
222 Lahey Fortran 90 Language Reference

TINY Function

r

 given

 be a
Example
call timer (iticks)

TINY Function

Description
Smallest representable positive number of data type.

Syntax
TINY (x)

Arguments
x must be of type REAL.

Result
The result is a scalar of the same type and kind as x. Its value is the smallest positive numbe
in the data type of x.

Example
a = tiny (4.0) ! a is assigned 0.117549E-37

TRANSFER Function

Description
Interpret the physical representation of a number with the type and type parameters of a
number.

Syntax
TRANSFER (source, mold, size)

Required Arguments
source can be of any type.

mold can be of any type.

Optional Arguments
size must be a scalar of type INTEGER. The corresponding actual argument must not
optional dummy argument.
Lahey Fortran 90 Language Reference223

Chapter 2 Alphabetical Reference

l-

tion of

g part
ion
e lead-
Result
The result is of the same type and type parameters as mold. If mold is a scalar and size is
absent the result is a scalar. If mold is array-valued and size is absent, the result is array va
ued and of rank one. Its size is as small as possible such that it is not shorter than source. If
size is present, the result is array-valued of rank one and of size size.

If the physical representation of the result is the same length as the physical representa
source, the physical representation of the result is that of source. If the physical representa-
tion of the result is longer than that of source, the physical representation of the leadin
of the result is that of source and the trailing part is undefined. If the physical representat
of the result is shorter than that of source, the physical representation of the result is th
ing part of source.

Example
real :: a
integer :: i
a = transfer(i,a) ! a is assigned the physical
 ! representation of i

TRANSPOSE Function

Description
Transpose an array of rank two.

Syntax
TRANSPOSE (matrix)

Arguments
matrix can be of any type. It must be of rank two.

Result
The result is of the same type, kind, and rank as matrix. Its shape is (n, m), where (m, n) is
the shape of matrix. Element (i, j) of the result has the value matrix(j, i).
224 Lahey Fortran 90 Language Reference

TRIM Function

r
Example
integer, dimension(2,3):: a = reshape((/1,2,3,4,5,6/),(/2,3/))

! represents the matrix |1 3 5|

 |2 4 6|

integer, dimension(3,2) :: b

b = transpose(a) ! b is assigned the value

! |1 2|

! |3 4|

! |5 6|

TRIM Function

Description

Omit trailing blanks.

Syntax

TRIM (string)

Arguments

string must be of type CHARACTER and must be scalar.

Result

The result is of the same type and kind as string. Its value and length are those of string with
trailing blanks removed.

Example
shorter = trim("longer ")

 ! shorter is assigned the value "longer"

Type Declaration Statement

See INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, o
TYPE statement.
Lahey Fortran 90 Language Reference225

Chapter 2 Alphabetical Reference

ent are

O-

tion

.

a pro-
e, an

ith
TYPE Statement

Description
The TYPE statement specifies that all entities whose names are declared in the statem
of the derived type named in the statement.

Syntax
TYPE (type-name) [, attribute-list ::] entity [, entity] ...

Where:
type-name is the name of a derived type previously defined in a derived-type definition.

attribute-list is a comma-separated list from the following attributes: PARAMETER, ALL
CATABLE, DIMENSION(array-spec), EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entity is entity-name [(array-spec)] [= initialization-expr]
or function-name [(array-spec)]

array-spec is an array specification.

initialization-expr is an expression that can be evaluated at compile time.

entity-name is the name of a data object being declared.

function-name is the name of a function being declared.

Remarks
The same attribute must not appear more than once in a TYPE statement.

function-name must be the name of an external, statement, or intrinsic function, or a func
dummy procedure.

The = initialization-expr must appear if the statement contains a PARAMETER attribute

If = initialization-expr appears, a double colon must appear before the list of entities. Each
entity has the SAVE attribute, unless it is in a named common block.

The = initialization-expr must not appear if entity-name is a dummy argument, a function
result, an object in a named common block unless the type declaration is in a block dat
gram unit, an object in blank common, an allocatable array, a pointer, an external nam
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified w
a deferred shape.
226 Lahey Fortran 90 Language Reference

UBOUND Function

ec-

ed

cat-

mmy

ec-

.

An array-spec for a function-name that does not have the POINTER attribute must be sp
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specifi
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allo
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.

An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a du
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a TYPE statement must not have the EXTERNAL or INTRINSIC attribute sp
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
type zee

 real :: a, b

 integer :: i

end type zee

type (zee) :: a, b, c ! a, b, and c are of type zee

type (zee), dimension (2, 4) :: d

 ! d is a 2 by 4 array of type zee

type (zee) :: e = zee(2.0, 3.5, -1)

 ! e is initialized

UBOUND Function

Description
Upper bounds of an array or a dimension of an array.
Lahey Fortran 90 Language Reference227

Chapter 2 Alphabetical Reference

ociated

es

oat-
s

 has
Syntax
UBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disass
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimension of array.

Result
The result is of type default INTEGER. If dim is present, the result is a scalar with the value
of the upper bound of array. If dim is absent, the result is an array of rank one with valu
corresponding to the upper bounds of each dimension of array.

The result is zero for zero-sized dimensions.

Example
integer, dimension (3,-4:0) :: i

integer :: k, j(2)

j = ubound (i) ! j is assigned the value [3,0]

k = ubound (i, 2) ! k is assigned the value 0

UNDFL Subroutine

Description
The initial invocation of the UNDFL subroutine masks the underflow interrupt on the fl
ing-point unit. lflag must be set to true on the first invocation. Subsequent envocation
return true or false in the lflag variable if the exception has occurred or not occurred,
respectively.

Syntax
UNDFL (lflag)

Arguments
lflag must be of type LOGICAL. It is assigned the value true if an underflow exception
occurred, and false otherwise.

Example
call undfl (lflag) ! mask the underflow interrupt
228 Lahey Fortran 90 Language Reference

UNPACK Function

 the

t also
UNPACK Function

Description
Unpack an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask, field)

Arguments
vector can be of any type. It must be of rank one. Its size must be at least as large as
number of true elements in mask.

mask must be of type LOGICAL. It must be array-valued.

field must be of the same type and type parameters as vector. It must be conformable with
mask.

Result
The result is an array of the same type and type parameters as vector and the same shape as
mask. The element of the result that corresponds to the ith element of mask, in array-element
order, has the value vector(i) for i = 1, 2, ..., t, where t is the number of true values in mask.
Each other element has the value field if field is scalar or the corresponding element in field,
if field is an array.

Example
integer, dimension(9) :: c = (/0,3,2,4,3,2,5,1,2/)

logical, dimension(2,2) :: d

integer, dimension(2,2) :: e

d = reshape((/.false.,.true.,.true.,.false./), (/2, 2/))

e = unpack(c,mask=d,field=-1)

! e is assigned |-1 3|

! | 0 -1|

USE Statement

Description
The USE specifies that a specified module is accessible by the current scoping unit. I
provides a means of renaming or limiting the accessibility of entities in the module.
Lahey Fortran 90 Language Reference229

Chapter 2 Alphabetical Reference

d

 same
erface.

e only
Syntax
USE module [, rename-list]

or
USE module, ONLY: [only-list]

Where:
module is the name of a module.

rename-list is a comma-separated list of local-name => use-name

only-list is a comma-separated list of access-id
or [local-name => use-name]

local-name is the local name for the entity specified by use-name

use-name is the name of an entity in the specified module

access-id is use-name
or generic-spec

generic-spec is generic-name
or OPERATOR (defined-operator)
or ASSIGNMENT (=)

generic-name is the name of a generic procedure.

defined-operator is one of the intrinsic operators
or .op-name.

op-name is a user-defined name for the operation.

Remarks
If no local-name is specified, the local name is use-name.

A USE statement without ONLY provides access to all PUBLIC entities in the specifie
module.

A USE statement with ONLY provides access only to those entities that appear in theonly-
list.

If more than one USE statement appears in a scoping unit, the rename-lists and only-lists are
treated as one concatenated rename-list.

If two or more generic interfaces that are accessible in the same scoping unit have the
name, same operator, or are assignments, they are interpreted as a single generic int

Two or more accessible entities, other than generic interfaces, can have the same nam
if no entity is referenced by this name in the scoping unit.

An entity can be accessed by more than one local-name.
230 Lahey Fortran 90 Language Reference

VAL Function

n-
in the

 used
e its

ject
A local-name must not be respecified with differing attributes in the scoping unit that co
tains the USE statement, except that it can appear in a PUBLIC or PRIVATE statement
scoping unit of a module.

Forward references to modules are not allowed in Lahey Fortran. That is, if a module is
in the same source file in which it resides, the module program unit must appear befor
use.

Example
use my_lib, aleph => alpha
 ! use all public entities in my_lib, and
 ! refer to alpha as aleph locally to prevent
 ! conflict with alpha in this_module below
use this_module, only: alpha, beta, operator(+)
 ! use only alpha, beta, and the defined
 ! operator (+) from this_module

VAL Function

Description
Pass an item to a procedure by value. VAL can only be used as an actual argument.

Syntax
VAL (item)

Arguments
item can be a named data object of type INTEGER, REAL, or LOGICAL. It is the data ob
for which to return an address. item is an INTENT(IN) argument.
Lahey Fortran 90 Language Reference231

Chapter 2 Alphabetical Reference
Result
The result is the value of item. Its C data type is as follows:

Example
i = my_c_function(val(a)) ! a is passed by value

Table 11: VAL result types

Fortran Type Fortran Kind C type

INTEGER 1 long int

INTEGER 2 long int

INTEGER 4 long int

REAL 4 float

REAL 8 double

COMPLEX 4

must not be passed by value; if
passed by reference (without

CARG) it is a pointer to a structure
of the form:

struct complex {
float real_part;

float imaginary_part;};

COMPLEX 8

must not be passed by value; if
passed by reference (without

CARG) it is a pointer to a structure
of the form:

struct dp_complex {
double real_part;

double imaginary_part;};

LOGICAL 1 unsigned long

LOGICAL 4 unsigned long

CHARACTER 1
must not be passed by value with

VAL
232 Lahey Fortran 90 Language Reference

VERIFY Function

ber

 of
VERIFY Function

Description

Verify that a set of characters contains all the characters in a string.

Syntax

VERIFY (string, set, back)

Required Arguments

string must be of type CHARACTER.

set must be of the same kind and type as string.

Optional Arguments

back must be of type LOGICAL.

Result

The result is of type default INTEGER. If back is absent, or if it is present with the value
false, the value of the result is the position number of the leftmost character in string that is
not in set. If back is present with the value true, the value of the result is the position num
of the rightmost character in string that is not in set. The value of the result is zero if each
character in string is in set, or if string has length zero.

Example
i = verify ("Lalalalala","l") ! i is assigned the

 ! value 1

i = verify ("LalalaLALA","LA",back=.true.)

 ! i is assigned the

 ! value 6

WHERE Construct

Description

The WHERE construct controls which elements of an array will be affected by a block
assignment statements. This is also known as masked array assignment.
Lahey Fortran 90 Language Reference233

Chapter 2 Alphabetical Reference

r all
 of

 value
ent
Syntax

WHERE (mask-expr)

[assignment-stmt]

[assignment-stmt]

...

[ELSEWHERE]

[assignment-stmt]

[assignment-stmt]

...

END WHERE

Where:

mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated fo
elements where mask-expr is true and the result assigned to the corresponding elements
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result
governs the masking of assignments in the WHERE statement or construct. Subsequ
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example
where (b>c) ! begin where construct

 b = -1

elsewhere

 b = 1

end where
234 Lahey Fortran 90 Language Reference

WHERE Statement

t state-
ore

r all
 of

 value
ent
WHERE Statement

Description
The WHERE statement is used to mask the assignment of values in array assignmen
ments. The WHERE statement can begin a WHERE construct that contains zero or m
assignment statements, or can itself contain an assignment statement.

Syntax
WHERE (mask-expr) [assignment-stmt]

Where:

mask-expr is a LOGICAL expression.

assignment-stmt is an assignment statement.

Remarks
If the WHERE statement contains no assignment-stmt, it specifies the beginning of a
WHERE construct.

The variable on the left-hand side of assignment-stmt must have the same shape as mask-
expr.

When assignment-stmt is executed, the right-hand side of the assignment is evaluated fo
elements where mask-expr is true and the result assigned to the corresponding elements
the left-hand side.

If a non-elemental function reference occurs in the right-hand side of assignment-stmt, the
function is evaluated without any masked control by the mask-expr.

mask-expr is evaluated at the beginning of the masked array assignment and the result
governs the masking of assignments in the WHERE statement or construct. Subsequ
changes to entities in mask-expr have no effect on the masking.

assignment-stmt must not be a defined assignment.

Example
! a, b, and c are arrays

where (a>b) a = -1 ! where statement

where (b>c) ! begin where construct

 b = -1

elsewhere

 b = 1

end where
Lahey Fortran 90 Language Reference235

Chapter 2 Alphabetical Reference

ed in

le-

ondi-
ro
WRITE Statement

Description
The WRITE statement transfers values to an input/output unit from the entities specifi
an output list or a namelist group.

Syntax
WRITE (io-control-specs) [outputs]

Where:
outputs is a comma-separated list of expr
or io-implied-do

expr is a variable.

io-implied-do is (outputs, implied-do-control)

implied-do-control is do-variable = start, end [, increment]

start, end, and increment are scalar numeric expressions of type INTEGER, REAL or doub
precision REAL.

do-variable is a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specs is a comma-separated list of
[UNIT =] io-unit
or [FMT =] format
or [NML =] namelist-group-name
or REC = record
or IOSTAT = stat
or ERR = errlabel
or END = endlabel
or EOR = eorlabel
or ADVANCE = advance
or SIZE = size

io-unit is an external file unit
or *

format is a format specification (see “Input/Output Editing” beginning on page 24).

namelist-group-name is the name of a namelist group.

record is the number of the direct-access record that is to be written.

stat is a scalar default INTEGER variable that is assigned a positive value if an error c
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and ze
otherwise.
236 Lahey Fortran 90 Language Reference

WRITE Statement

con-

ition

 con-

cing
e is

ns-
tput

r-
r.
ith

array-

s were
errlabel is a label that is branched to if an error condition occurs and no end-of-record
dition or end-of-file condition occurs during execution of the statement.

endlabel is a label that is branched to if an end-of-file condition occurs and no error cond
occurs during execution of the statement.

eorlabel is a label that is branched to if an end-of-record condition occurs and no error
dition or end-of-file condition occurs during execution of the statement.

advance is a scalar default CHARACTER expression that evaluates to NO if non-advan
input/output is to occur, and YES if advancing input/output is to occur. The default valu
YES.

size is a scalar default INTEGER variable that is assigned the number of characters tra
ferred by data edit descriptors during execution of the current non-advancing input/ou
statement.

Remarks
io-control-specs must contain exactly one io-unit, and must not contain both a format and a
namelist-group-name.

A namelist-group-name must not appear if outputs is present.

If the optional characters UNIT= are omitted before io-unit, io-unit must be the first item in
io-control-specs. If the optional characters FMT= are omitted before format, format must be
the second item in io-control-specs. If the optional characters NML= are omitted before
namelist-group-name, namelist-group-name must be the second item in io-control-specs.

If io-unit is an internal file, io-control-specs must not contain a REC= specifier or a namelist-
group-name.

If the REC= specifier is present, an END= specifier must not appear, a namelist-group-name
must not appear, and format must not be an asterisk indicating list-directed I/O.

An ADVANCE= specifier can appear only in formatted sequential I/O with an explicit fo
mat specification (format-expr) whose control list does not contain an internal file specifie
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear w
the value NO.

The do-variable of an implied-do-control that is contained within another io-implied-do must
not appear as the do-variable of the containing io-implied-do.

If an array appears as an output item, it is treated as if the elements were specified in
element order.

If a derived type object appears as an output item, it is treated as if all of the component
specified in the same order as in the definition of the derived type.
Lahey Fortran 90 Language Reference237

Chapter 2 Alphabetical Reference

 that
ect
Example
write (*,*) a,b,c ! write a, b, and c using list-
 ! directed i/o
write (3, fmt= "(e7.4)") x
 ! write x to unit 3 using e format
write 10, i,j,k
 ! write i, j, and k using format on
 ! line 10

YIELD Subroutine

Description
The YIELD subroutine causes a Windows 3.1 program to yield control to Windows so
computation-intensive operations do not monopolize the processor. YIELD has no eff
under other supported operating systems.

Syntax
YIELD ()

Example
call yield ()
238 Lahey Fortran 90 Language Reference

YIELD Subroutine
Lahey Fortran 90 Language Reference239

Chapter 2 Alphabetical Reference
240 Lahey Fortran 90 Language Reference

A Fortran 77
Compatibilit y
sed by

ortran
ns in

-

.

n-

o-

.

This chapter discusses issues that affect the behavior of Fortran 77 code when proces
Lahey Fortran 90.

Different Interpretation Under Fortran 90
Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming F
77 program will compile properly under Fortran 90. There are, however, some situatio
which the program’s interpretation may differ.

• Fortran 77 permitted a processor to supply more precision derived from a REAL con
stant than can be contained in a REAL datum when the constant is used to initialize
a DOUBLE PRECISION data object in a DATA statement. Fortran 90 does not per-
mit this option.

• If a named variable that is not in a common block is initialized in a DATA statement
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute
processor-dependent. Fortran 90 specifies that this named variable has the SAVE
attribute.

• Fortran 77 required that the number of characters required by the input list must be
less than or equal to the number of characters in the record during formatted input
Fortran 90 specifies that the input record is logically padded with blanks if there are
not enough characters in the record, unless the PAD=”NO” option is specified in an
appropriate OPEN statement.

• Fortran 90 has more intrinsic procedures than Fortran 77. Therefore, a standard-co
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokes a procedure having the same name as one of the new standard intrinsic pr
cedures, unless that procedure is specified in an EXTERNAL statement as
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard
Lahey Fortran 90 Language Reference241

Appendix A Fortran 77 Compatibility

pular
ot pro-

r

r
Obsolescent Features
The following features are obsolescent. Their use in new code is not recommended:

• Arithmetic IF

• REAL and double-precision DO control variables and DO loop control expressions

• shared DO termination and termination on a statement other than END DO or
CONTINUE

• Branching to an END IF statement from outside its IF block

• Alternate return

• PAUSE statement

• ASSIGN statement and assigned GOTO statement

• Assigned format specifier

• nH (Hollerith) edit descriptor

Popular Extensions
In addition to the extensions documented in blue in Chapters 1 and 2, the following po
Fortran 77 extensions are supported for backward compatibility. These features do n
vide functionality absent from standard Fortran 90 and they are likely to cause porting
problems when moving to other Fortran 90 platforms. Their use in new code is not
recommended:

• in fixed source form, if a tab appears in the first six columns, it is replaced by blanks
through column 6 if the character following the tab is a letter; otherwise, it is replaced
by blanks through column 5 so the character is placed in the continuation characte
column.

• the ‘$’ character can be used as a non-initial character in a name.

• up to 99 continuation lines are accepted in fixed source form.

• typespec * n in type declaration statements, e.g., REAL*8, INTEGER*4.

• BYTE as a synonym for INTEGER*1 and DOUBLE COMPLEX as a synonym for
COMPLEX*16.

• in a type declaration statement, each item can be initialized by following the name o
array declarator with an initial value contained between slashes.

• in certain cases, missing mandatory commas in format specifications are allowed.

• Lahey NAMELIST formatting.
242 Lahey Fortran 90 Language Reference

Popular Extensions

-

• Lahey Ew.d[De] edit descriptor.

• the use of the numbers 2 through 9 for carriage control in formatted output.

• a comma in a numeric input field terminates the field regardless of whether the spec
ified width has been exhausted.

• the edit descriptors Q, \, and $.

• the RESULT option may be omitted from scalar recursive functions.

• various intrinsic procedures documented in blue in the appendix “Intrinsic
Procedures.”

• the Lahey RND, RRAND, and RANDS random number routines and DATE and
TIME subroutines.
Lahey Fortran 90 Language Reference243

Appendix A Fortran 77 Compatibility
244 Lahey Fortran 90 Language Reference

B New in Fortran 90
The following Fortran 90 features were not present in Fortran 77.

Miscellaneous
• free source form
• enhancements to fixed source form:

“;” statement separator
“!” trailing comment

• names may be up to 31 characters in length
• both upper and lower case characters are accepted
• INCLUDE line
• relational operators in mathematical notation
• enhanced END statement
• IMPLICIT NONE
• binary, octal, and hexadecimal constants
• quotation marks around CHARACTER constants

Data
• enhanced type declaration statements
• new attributes:

extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE

• kind and length type parameters
• derived types
• pointers
Lahey Fortran 90 Language Reference245

Appendix B New in Fortran 90
Operations
• extended intrinsic operators
• extended assignment
• user-defined operators

Arrays
• automatic arrays
• allocatable arrays
• assumed-shape arrays
• array sections
• array expressions
• masked array assignment (WHERE statement and construct)

Execution Control
• CASE construct
• enhance DO construct
• CYCLE statement
• EXIT statement

Input/Output
• binary, octal, and hexadecimal edit descriptors
• engineering and scientific edit descriptors
• namelist formatting
• partial record capabilities (non-advancing I/O)
• extra OPEN and INQUIRE specifiers

Procedures
• keyword arguments
• optional arguments
• INTENT attribute
• derived type actual arguments and functions
• array-valued functions
• recursive procedures
• user-defined generic procedures
• elemental intrinsic procedures
• specification of procedure interfaces
• internal procedures

Modules

New Intrinsic Procedures
• PRESENT
• numeric functions
246 Lahey Fortran 90 Language Reference

CEILING
FLOOR
MODULO

• character functions
ACHAR
ADJUSTL
ADJUSTR
IACHAR
LEN_TRIM
REPEAT
SCAN
TRIM
VERIFY

• Kind Functions
KIND
SELECTED_INT_KIND
SELECTED_REAL_KIND

• LOGICAL
• numeric inquiry functions

DIGITS
EPSILON
HUGE
MAXEXPONENT
MINEXPONENT
PRECISION
RADIX
RANGE
TINY

• BIT_SIZE
• bit manipulation functions

BTEST
IAND
IBCLR
IBITS
IBSET
IEOR
IOR
ISHFT
ISHFTC
NOT

• TRANSFER
• floating-point manipulation functions

EXPONENT
FRACTION
Lahey Fortran 90 Language Reference247

Appendix B New in Fortran 90
NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

• vector and matrix multiply functions
DOT_PRODUCT
MATMUL

• array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

• array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

• array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

• RESHAPE
• array manipulation functions

CSHFT
EOSHIFT
TRANSPOSE

• array location functions
MAXLOC
MINLOC

• ASSOCIATED
• intrinsic subroutines

DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK
248 Lahey Fortran 90 Language Reference

C Intrinsic Procedures
 For

with

d by an
the
The tables in this chapter offer a synopsis of procedures included with Lahey Fortran.
detailed information on individual procedures, see the chapter “Alphabetical Reference” on
page 59.

All procedures in these tables are intrinsic. VAX/IBM extension procedures, indicated
a dagger, require the -vax compiler switch.

Specific function names may be passed as actual arguments except for where indicate
asterisk in the tables. Note that for almost all programming situations it is best to use
generic procedure name.
Lahey Fortran 90 Language Reference249

Appendix C Intrinsic Procedures
Table 12: Numeric Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class

ABS
CABS
CDABS†
DABS
IABS
I2ABS
IIABS†
JIABS†

Numeric
REAL_4
REAL_8
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Numeric
COMPLEX_4
COMPLEX_8
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Absolute Value. Elemental

AIMAG
DIMAG†

REAL
REAL_8

COMPLEX
COMPLEX_8

Imaginary part
of a complex
number.

Elemental

AINT
DINT

REAL
REAL_8

REAL
REAL_8

Truncation to a
whole number.

Elemental

ANINT
DNINT

REAL
REAL_8

REAL
REAL_8

REAL represen-
tation of the near-
est whole
number.

Elemental

CEILING INTEGER_4 REAL

Smallest INTE-
GER greater
than or equal to a
number.

Elemental

CMPLX
DCMPLX†

COMPLEX
COMPLEX_8

Numeric
Numeric

Convert to type
COMPLEX.

Elemental

CONJG
DCONJG†

COMPLEX
COMPLEX_8

COMPLEX
COMPLEX_8

Conjugate of a
complex number.

Elemental

DBLE
DREAL†*
DFLOAT†*

REAL_8
REAL_8
REAL_8

Numeric
COMPLEX_8
INTEGER_4

Convert to dou-
ble-precision
REAL type.

Elemental
250 Lahey Fortran 90 Language Reference

DIM

DDIM
IDIM
I2DIM
IIDIM†
JIDIM†

INTEGER or
REAL
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

The difference
between two
numbers if the
difference is pos-
itive; zero other-
wise.

Elemental

DPROD REAL_8 REAL_4
Double-preci-
sion REAL prod-
uct.

Elemental

EXPO-
NENT

REAL REAL

Exponent part of
the model repre-
sentation of a
number.

Elemental

FLOOR INTEGER_4 REAL

Greatest INTE-
GER less than or
equal to a num-
ber.

Elemental

FRAC-
TION

REAL REAL

Fraction part of
the physical rep-
resentation of a
number.

Elemental

INT
IDINT*
IFIX*
INT2*
INT4*
HFIX†*
IINT†*
JINT†*
IIDINT†*
JIDINT†*
IIFIX†*
JIFIX†*

INTEGER
INTEGER
INTEGER
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Numeric
REAL_8
REAL_4
Numeric
Numeric
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8
REAL_4
REAL_4

Convert to INTE-
GER type.

Elemental

Table 12: Numeric Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class
Lahey Fortran 90 Language Reference251

Appendix C Intrinsic Procedures
MAX

AMAX0*
AMAX1*
DMAX1*
MAX0*
MAX1*
I2MAX0*
IMAX0†*
JMAX0†*
IMAX1†*
JMAX1†*
AIMAX0†*
AJMAX0†*

INTEGER or
REAL
REAL_4
REAL_4
REAL_8
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or
REAL
INTEGER_4
REAL_4
REAL_8
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Maximum value. Elemental

MIN

AMIN0*
AMIN1*
DMIN1*
MIN0*
MIN1*
I2MIN0*
IMIN0†*
JMIN0†*
IMIN1†*
JMIN1†*
AIMIN0†*
AJMIN0†*

INTEGER or
REAL
REAL_4
REAL_4
REAL_8
INTEGER_4
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4
REAL_4
REAL_4

INTEGER or
REAL
INTEGER_4
REAL_4
REAL_8
INTEGER_4
REAL_4
INTEGER_2
INTEGER_2
INTEGER_4
REAL_4
REAL_4
INTEGER_2
INTEGER_4

Minimum value. Elemental

MOD

AMOD
DMOD
I2MOD
IMOD†
JMOD†

INTEGER or
REAL
REAL_4
REAL_8
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_4
REAL_8
INTEGER_2
INTEGER_2
INTEGER_4

Remainder. Elemental

Table 12: Numeric Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class
252 Lahey Fortran 90 Language Reference

MODULO
INTEGER or
REAL

INTEGER or
REAL

Modulo. Elemental

NEAREST REAL REAL

Nearest number
of a given data
type in a given
direction.

Elemental

NINT
IDNINT
I2NINT
ININT†
JNINT†
IIDNNT†
JIDNNT†

INTEGER
INTEGER_4
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

REAL
REAL_8
REAL
REAL_4
REAL_4
REAL_8
REAL_8

Nearest INTE-
GER.

Elemental

REAL
FLOAT*
SNGL*
FLOATI*†
FLOATJ*†
DFLOTI*†
DFLOTJ*†

REAL
REAL_4
REAL_4
REAL_4
REAL_4
REAL_8
REAL_8

Numeric
INTEGER
REAL_8
INTEGER_2
INTEGER_4
INTEGER_2
INTEGER_4

Convert to REAL
type.

Elemental

RRSPAC-
ING

REAL REAL

Reciprocal of rel-
ative spacing
near a given
number.

Elemental

SCALE REAL
REAL and
INTEGER

Multiply a num-
ber by a power of
two.

Elemental

SET_
EXPO-
NENT

REAL
REAL and
INTEGER

Model represen-
tation of a num-
ber with
exponent part set
to a power of
two.

Elemental

Table 12: Numeric Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class
Lahey Fortran 90 Language Reference253

Appendix C Intrinsic Procedures
SIGN

DSIGN
ISIGN
I2SIGN
IISIGN†
JISIGN†

INTEGER or
REAL
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

INTEGER or
REAL
REAL_8
INTEGER_4
INTEGER_2
INTEGER_2
INTEGER_4

Transfer of sign. Elemental

SPACING REAL REAL
Absolute spacing
near a given
number.

Elemental

Table 12: Numeric Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class
254 Lahey Fortran 90 Language Reference

Table 13: Mathematical Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class

ACOS
DACOS

REAL
REAL_8

REAL
REAL_8

Arccosine. Elemental

ASIN
DASIN

REAL
REAL_8

REAL
REAL_8

Arcsine. Elemental

ATAN
DATAN

REAL
REAL_8

REAL
REAL_8

Arctangent. Elemental

ATAN2
DATAN2

REAL
REAL_8

REAL
REAL_8

Arctangent of y/x
(principal value
of the argument
of the complex
number (x,y)).

Elemental

COS

CCOS
CDCOS†
DCOS

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

Cosine. Elemental

COSH
DCOSH

REAL
REAL_8

REAL
REAL_8

Hyperbolic
cosine.

Elemental

EXP

CEXP
CDEXP†
DEXP

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

Exponential. Elemental

LOG

ALOG
CLOG
CDLOG†
DLOG

REAL or
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
REAL_8

REAL or
COMPLEX
REAL_4
COMPLEX_4
COMPLEX_8
REAL_8

Natural loga-
rithm.

Elemental

LOG10
ALOG10
DLOG10

REAL
REAL_4
REAL_8

REAL
REAL_4
REAL_8

Common loga-
rithm.

Elemental
Lahey Fortran 90 Language Reference255

Appendix C Intrinsic Procedures
SIN

CSIN
CDSIN†
DSIN

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

Sine. Elemental

SINH
DSINH

REAL
REAL_8

REAL
REAL_8

Hyperbolic sine. Elemental

SQRT

CSQRT
CDSQRT†
DSQRT

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

REAL or
COMPLEX
COMPLEX_4
COMPLEX_8
REAL_8

Square root. Elemental

TAN
DTAN

REAL
REAL_8

REAL
REAL_8

Tangent. Elemental

TANH
DTANH

REAL
REAL_8

REAL
REAL_8

Hyperbolic tan-
gent.

Elemental

Table 13: Mathematical Functions

Name
Specific
Names

Function Type
Argument
Type

Description Class
256 Lahey Fortran 90 Language Reference

Table 14: Character Functions

Name Description Class

ACHAR
Character in a specified position of the ASCII
collating sequence.

Elemental

ADJUSTL
Adjust to the left, removing leading blanks and
inserting trailing blanks.

Elemental

ADJUSTR
Adjust to the right, removing trailing blanks and
inserting leading blanks.

Elemental

CHAR
Given character in the collating sequence of the a
given character set.

Elemental

IACHAR
Position of a character in the ASCII collating
sequence.

Elemental

ICHAR
Position of a character in the processor collating
sequence associated with the kind of the charac-
ter.

Elemental

INDEX Starting position of a substring within a string. Elemental

LEN Length of a CHARACTER data object. Inquiry

LEN_TRIM
Length of a CHARACTER entity without trail-
ing blanks.

Elemental

LGE
Test whether a string is lexically greater than or
equal to another string based on the ASCII col-
lating sequence.

Elemental

LGT
Test whether a string is lexically greater than
another string based on the ASCII collating
sequence.

Elemental

LLE
Test whether a string is lexically less than or
equal to another string based on the ASCII col-
lating sequence.

Elemental

LLT
Test whether a string is lexically less than
another string based on the ASCII collating
sequence.

Elemental

REPEAT Concatenate copies of a string.
Transforma-
tional
Lahey Fortran 90 Language Reference257

Appendix C Intrinsic Procedures
SCAN Scan a string for any one of a set of characters. Elemental

TRIM Omit trailing blanks.
Transforma-
tional

VERIFY
Verify that a set of characters contains all the
characters in a string.

Elemental

Table 14: Character Functions

Name Description Class
258 Lahey Fortran 90 Language Reference

Table 15: Array Functions

Name Description Class

ALL
Determine whether all values in a mask are true
along a given dimension.

Transforma-
tional

ALLOCATED
Indicate whether an allocatable array has been
allocated.

Inquiry

ANY
Determine whether any values are true in a mask
along a given dimension.

Transforma-
tional

COUNT
Count the number of true elements in a mask
along a given dimension.

Transforma-
tional

CSHIFT

Circular shift of all rank one sections in an array.
Elements shifted out at one end are shifted in at
the other. Different sections can be shifted by
different amounts and in different directions by
using an array-valued shift.

Transforma-
tional

DOT_
PRODUCT

Dot-product multiplication of vectors.
Transforma-
tional

EOSHIFT

End-off shift of all rank one sections in an array.
Elements are shifted out at one end and copies of
boundary values are shifted in at the other. Dif-
ferent sections can be shifted by different
amounts and in different directions by using an
array-valued shift.

Transforma-
tional

LBOUND
Lower bounds of an array or a dimension of an
array.

Inquiry

MATMUL Matrix multiplication.
Transforma-
tional

MAXLOC
Location of the first element in array having the
maximum value of the elements identified by
mask.

Transforma-
tional

MAXVAL
Maximum value of elements of an array, along a
given dimension, for which a mask is true.

Transforma-
tional

MERGE
Choose alternative values based on the value of a
mask.

Elemental
Lahey Fortran 90 Language Reference259

Appendix C Intrinsic Procedures
MINLOC
Location of the first element in array having the
minimum value of the elements identified by
mask.

Transforma-
tional

MINVAL
Minimum value of elements of an array, along a
given dimension, for which a mask is true.

Transforma-
tional

PACK
Pack an array into a vector under control of a
mask.

Transforma-
tional

PRODUCT
Product of elements of an array, along a given
dimension, for which a mask is true.

Transforma-
tional

RESHAPE
Construct an array of a specified shape from a
given array.

Transforma-
tional

SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

SPREAD
Adds a dimension to an array by adding copies
of a data object along a given dimension.

Transforma-
tional

SUM
Sum of elements of an array, along a given
dimension, for which a mask is true.

Transforma-
tional

TRANSPOSE Transpose an array of rank two.
Transforma-
tional

UBOUND
Upper bounds of an array or a dimension of an
array.

Inquiry

UNPACK
Unpack an array of rank one into an array under
control of a mask.

Transforma-
tional

Table 15: Array Functions

Name Description Class
260 Lahey Fortran 90 Language Reference

Table 16: Inquiry and Kind Functions

Name Description Class

ALLOCATED
Indicate whether an allocatable array has been
allocated.

Inquiry

ASSOCIATED
Indicate whether a pointer is associated with a
target.

Inquiry

BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry

DIGITS Number of significant binary digits. Inquiry

EPSILON
Positive value that is almost negligible compared
to unity.

Inquiry

HUGE Largest representable number of data type. Inquiry

KIND Kind type parameter. Inquiry

LBOUND
Lower bounds of an array or a dimension of an
array.

Inquiry

LEN Length of a CHARACTER data object. Inquiry

MAXEXPO-
NENT

Maximum binary exponent of data type. Inquiry

MINEXPO-
NENT

Minimum binary exponent of data type. Inquiry

PRECISION Decimal precision of data type. Inquiry

PRESENT
Determine whether an optional argument is
present.

Inquiry

RADIX
Number base of the physical representation of a
number.

Inquiry

RANGE Decimal range of the data type of a number. Inquiry

SELECTED_
INT_KIND

Kind type parameter of an INTEGER data type
that represents all integer values n with

.

Transforma-
tional

SELECTED_
REAL_KIND

Kind type parameter of a REAL data type with
decimal precision of at least p digits and a deci-
mal exponent range of at least r.

Transforma-
tional

10– r
n 10r< <
Lahey Fortran 90 Language Reference261

Appendix C Intrinsic Procedures
SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

TINY
Smallest representable positive number of data
type.

Inquiry

UBOUND
Upper bounds of an array or a dimension of an
array.

Inquiry

Table 16: Inquiry and Kind Functions

Name Description Class
262 Lahey Fortran 90 Language Reference

Table 17: Bit Manipulation Procedures

Name
Specific
Names

Function Type
Argument
Type

Description Class

BTEST
BITEST†
BJTEST†

LOGICAL_4
LOGICAL_4
LOGICAL_4

INTEGER_4
INTEGER_2
INTEGER_4

Bit testing. Elemental

IAND
IIAND†
JIAND†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
AND.

Elemental

IBCLR
IIBCLR†
JIBCLR†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Clear one bit to
zero.

Elemental

IBITS
IIBITS†
JIBITS†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Extract a
sequence of bits.

Elemental

IBSET
IIBSET†
JIBSET†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Set a bit to one. Elemental

IEOR
IIEOR†
JIEOR†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
exclusive OR.

Elemental

IOR
IIOR†
JIOR†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
inclusive OR.

Elemental

ISHFT
IISHFT†
JISHFT†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise shift. Elemental

ISHFTC
IISHFTC†
JISHFTC†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise circular
shift of rightmost
bits.

Elemental

MVBITS INTEGER

Copy a sequence
of bits from one
INTEGER data
object to another.

Subroutine
Lahey Fortran 90 Language Reference263

Appendix C Intrinsic Procedures
NOT
INOT†
JNOT†

INTEGER
INTEGER_2
INTEGER_4

INTEGER
INTEGER_2
INTEGER_4

Bit-wise logical
complement.

Elemental

Table 18: Other Intrinsic Functions

Name Description Class

LOGICAL Convert between kinds of LOGICAL. Elemental

NULL Disassociated pointer. Elemental

TRANSFER
Interpret the physical representation of a number
with the type and type parameters of a given
number.

Transforma-
tional

Table 19: Standard Intrinsic Subroutines

Name Description Class

CPU_TIME CPU time. Subroutine

DATE_AND_
TIME

Date and real-time clock data. Subroutine

MVBITS
Copy a sequence of bits from one INTEGER
data object to another.

Subroutine

RANDOM_
NUMBER

Uniformly distributed pseudorandom number or
numbers in the range .

Subroutine

RANDOM_
SEED

Set or query the pseudorandom number genera-
tor used by RANDOM_NUMBER. If no argu-
ment is present, the processor sets the seed to a
predetermined value.

Subroutine

SYSTEM_
CLOCK

INTEGER data from the real-time clock. Subroutine

Table 17: Bit Manipulation Procedures

Name
Specific
Names

Function Type
Argument
Type

Description Class

0 x 1<≤
264 Lahey Fortran 90 Language Reference

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific
Names

Function Type
Argument
Type

Description Class

ACOSD†
DACOSD†

REAL_4
REAL_8

REAL_4
REAL_8

Arccosine in
degrees.

Elemental

ALGAMA†
DLGAMA†

REAL_4
REAL_8

REAL_4
REAL_8

Log gamma func-
tion.

Elemental

ASIND†
DASIND†

REAL_4
REAL_8

REAL_4
REAL_8

Arcsine in
degrees.

Elemental

ATAND†
DATAND†

REAL_4
REAL_8

REAL_4
REAL_8

Arctangent in
degrees.

Elemental

ATAN2D†
DATAN2D†

REAL_4
REAL_8

REAL_4
REAL_8

Arctangent of y/x
(principal value
of the argument
of the complex
number (x,y)) in
degrees.

Elemental

COSD†
DCOSD†

REAL_4
REAL_8

REAL_4
REAL_8

Cosine in
degrees.

Elemental

COTAN†
DCOTAN†

REAL_4
REAL_8

REAL_4
REAL_8

Contangent. Elemental

ERF†
DERF†

REAL_4
REAL_8

REAL_4
REAL_8

Error function. Elemental

ERFC†
DERFC†

REAL_4
REAL_8

REAL_4
REAL_8

Error function
complement.

Elemental

GAMMA†
DGAMMA†

REAL_4
REAL_8

REAL_4
REAL_8

Gamma function. Elemental

SIND†
DSIND†

REAL_4
REAL_8

REAL_4
REAL_8

Sine in degrees. Elemental

TAND†
DTAND†

REAL_4
REAL_8

REAL_4
REAL_8

Tangent in
degrees.

Elemental
Lahey Fortran 90 Language Reference265

Appendix C Intrinsic Procedures
IZEXT†
IZEXT2†
JZEXT†
JZEXT2†
JZEXT4†

INTEGER_2
INTEGER_2
INTEGER_4
INTEGER_4
INTEGER_4

LOGICAL_1
INTEGER_2
LOGICAL_4
INTEGER_2
INTEGER_4

Zero extend. Elemental

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific
Names

Function Type
Argument
Type

Description Class
266 Lahey Fortran 90 Language Reference

Table 21: Utility Procedures

Name Description Class

BREAK
Handle break interrupts during execution of the
program.

Utility
Subroutine

CARG
Pass item to a procedure as a C data type by
value. CARG can only be used as an actual
argument.

Utility
Function

DLL_EXPORT
Specify which procedures should be available in a
dynamic-link library.

Utility
Subroutine

DLL_IMPORT
Specify which procedures are to be imported from
a dynamic-link library.

Utility
Subroutine

DVCHK

The initial invocation of the DVCHK subroutine
masks the divide-by-zero interrupt on the float-
ing-point unit. Subsequent envocations return
true or false in the lflag variable if the exception
has occurred or not occurred, respectively.
DVCHK will not check or mask zero divided by
zero. Use INVALOP to check for a zero divided
by zero.

Utility
Subroutine

ERROR
Print a message to the console with a subpro-
gram traceback, then continue processing.

Utility
Subroutine

EXIT
Terminate the program and set the DOS error
level.

Utility
Subroutine

FLUSH
Empty the buffer for an input/output unit by
writing to its corresponding file. Note that this
does not flush the DOS file buffer.

Utility
Subroutine

GETCL Get command line.
Utility
Subroutine

GETENV Get the specified environment variable.
Utility
Function

INTRUP Execute a DOS or BIOS function.
Utility
Subroutine
Lahey Fortran 90 Language Reference267

Appendix C Intrinsic Procedures
INVALOP

The initial invocation of the INVALOP subrou-
tine masks the invalid operator interrupt on the
floating-point unit. Subsequent envocations
return true or false in the lflag variable if the
exception has occurred or not occurred, respec-
tively.

Utility
Subroutine

IOSTAT_MSG
Get a runtime I/O error message then continue
processing.

Utility
Subroutine

NBREAK Ignore break interrupts.
Utility
Subroutine

NDPERR Report floating point exceptions.
Utility
Function

NDPEXC Mask all floating point exceptions.
Utility
Subroutine

OFFSET
Get the DOS offset portion of the memory
address of a variable, substring, array reference,
or external subprogram.

Utility
Function

OVEFL

The initial invocation of the OVEFL subroutine
masks the overflow interrupt on the floating-
point unit. Subsequent envocations return true or
false in the lflag variable if the exception has
occurred or not occurred, respectively.

Utility
Subroutine

POINTER
Get the memory address of a variable, substring,
array reference, or external subprogram.

Utility
Function

PRECFILL
Set fill character for numeric fields that are wider
than supplied numeric precision. The default is
’0’.

Utility
Subroutine

PROMPT
Set prompt for subsequent READ statements.
Fortran default is no prompt.

Utility
Subroutine

SEGMENT
Get the DOS segment portion of the memory
address of a variable, substring, array reference,
or external subprogram.

Utility
Function

Table 21: Utility Procedures

Name Description Class
268 Lahey Fortran 90 Language Reference

SYSTEM
Execute a DOS command as if from the DOS
command line.

Utility
Subroutine

UNDFL

The initial invocation of the UNDFL subroutine
masks the underflow interrupt on the floating-
point unit. Subsequent envocations return true or
false in the lflag variable if the exception has
occurred or not occurred, respectively.

Utility
Subroutine

VAL
Pass an item to a procedure by value. VAL can
only be used as an actual argument.

Utility
Function

YIELD

Causes a Windows 3.1 program to yield control to
Windows so that computation-intensive operations
do not monopolize the processor. YIELD has no
effect under other supported operating systems.

Utility
Function

Table 21: Utility Procedures

Name Description Class
Lahey Fortran 90 Language Reference269

Appendix C Intrinsic Procedures
270 Lahey Fortran 90 Language Reference

D Glossar y
 that

s

u-

ce

l ele-
n, a

 struc-

argu-

ent.
action statement: A single statement specifying a computational action.

actual argument: An expression, a variable, a procedure, or an alternate return specifier
is specified in a procedure reference.

allocatable array: A named array having the ALLOCATABLE attribute. Only when it ha
space allocated for it does it have a shape and may it be referenced or defined.

argument: An actual argument or a dummy argument.

argument association: The relationship between an actual argument and a dummy arg
ment during the execution of a procedure reference.

argument keyword: A dummy argument name. It may be used in a procedure referen
ahead of the equals symbol provided the procedure has an explicit interface.

array: A set of scalar data, all of the same type and type parameters, whose individua
ments are arranged in a rectangular pattern. It may be a named array, an array sectio
structure component, a function value, or an expression. Its rank is at least one.

array element: One of the scalar data that make up an array that is either named or is a
ture component.

array pointer: A pointer to an array.

array section: A subobject that is an array and is not a structure component.

array-valued: Having the property of being an array.

assignment statement: A statement of the form ‘‘variable = expression’’.

association: Name association, pointer association, or storage association.

assumed-size array: A dummy array whose size is assumed from the associated actual
ment. Its last upper bound is specified by an asterisk.

attribute: A property of a data object that may be specified in a type declaration statem
Lahey Fortran 90 Language Reference271

Appendix D Glossary

longs
uct in

ct,
unit.

rray

units

calar

rms
n
ed in
d con-
rams

e pro-

vary

ent
automatic data object: A data object that is a local entity of a subprogram, that is not a
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong: If an EXIT or a CYCLE statement contains a construct name, the statement be
to the DO construct using that name. Otherwise, it belongs to the innermost DO constr
which it appears.

block: A sequence of executable constructs embedded in another executable constru
bounded by statements that are particular to the construct, and treated as an integral

block data program unit: A program unit that provides initial values for data objects in
named common blocks.

bounds: For a named array, the limits within which the values of the subscripts of its a
elements must lie.

character: A letter, digit, or other symbol.

character string: A sequence of characters numbered from left to right 1, 2, 3, . . .

collating sequence: An ordering of all the different characters of a particular kind type
parameter.

common block: A block of physical storage that may be accessed by any of the scoping
in an executable program.

component: A constituent of a derived type.

conformable: Two arrays are said to be conformable if they have the same shape. A s
is conformable with any array.

conformance: An executable program conforms to the standard if it uses only those fo
and relationships described therein and if the executable program has an interpretatio
according to the standard. A program unit conforms to the standard if it can be includ
an executable program in a manner that allows the executable program to be standar
forming. A processor conforms to the standard if it executes standard-conforming prog
in a manner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

 For an external file, the property of having an external unit that refers to it.

constant: A data object whose value must not change during execution of an executabl
gram. It may be a named constant or a literal constant.

constant expression: An expression satisfying rules that ensure that its value does not
during program execution.

construct: A sequence of statements starting with a CASE, DO, IF, or WHERE statem
and ending with the corresponding terminal statement.

data: Plural of datum.
272 Lahey Fortran 90 Language Reference

f the
type
efined

ith a
e the

ype.

ame
t been
ct that

ent
ENT

nc-

ype

-

he
tate-

.

te-
f a set
data entity: A data object, the result of the evaluation of an expression, or the result o
execution of a function reference (called the function result). A data entity has a data
(either intrinsic or derived) and has, or may have, a data value (the exception is an und
variable). Every data entity has a rank and is thus either a scalar or an array.

data object: A data entity that is a constant, a variable, or a subobject of a constant.

data type: A named category of data that is characterized by a set of values, together w
way to denote these values and a collection of operations that interpret and manipulat
values. For an intrinsic type, the set of data values depends on the values of the type
parameters.

datum: A single quantity that may have any of the set of values specified for its data t

definable: A variable is definable if its value may be changed by the appearance of its n
or designator on the left of an assignment statement. An allocatable array that has no
allocated is an example of a data object that is not definable. An example of a subobje
is not definable is C when C is an array that is a constant and I is an INTEGER variable.

defined: For a data object, the property of having or being given a valid value.

defined assignment statement: An assignment statement that is not an intrinsic assignm
statement and is defined by a subroutine and an interface block that specifies ASSIGNM
(=).

defined operation: An operation that is not an intrinsic operation and is defined by a fu
tion that is associated with a generic identifier.

derived type: A type whose data have components, each of which is either of intrinsic t
or of another derived type.

designator: See subobject designator.

disassociated: A pointer is disassociated following execution of a DEALLOCATE or NUL
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument: An entity whose name appears in the parenthesized list following t
procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY s
ment, or a statement function statement.

dummy array: A dummy argument that is an array.

dummy pointer: A dummy argument that is a pointer.

dummy procedure: A dummy argument that is specified or referenced as a procedure

elemental: An adjective applied to an intrinsic operation, procedure, or assignment sta
ment that is applied independently to elements of an array or corresponding elements o
of conformable arrays and scalars.
Lahey Fortran 90 Language Reference273

Appendix D Glossary

n
d vari-
l, a

an
hat has
y pro-

, a con-

ans

 or

on-

ent

oci-

am.
entity: The term used for any of the following: a program unit, a procedure, an operator, a
interface block, a common block, an external unit, a statement function, a type, a name
able, an expression, a component of a structure, a named constant, a statement labe
construct, or a namelist group.

executable construct: A CASE, DO, IF, or WHERE construct or an action statement.

executable program: A set of program units that includes exactly one main program.

executable statement: An instruction to perform or control one or more computational
actions.

explicit interface: For a procedure referenced in a scoping unit, the property of being
internal procedure, a module procedure, an intrinsic procedure, an external procedure t
an interface block, a recursive procedure reference in its own scoping unit, or a dumm
cedure that has an interface block.

explicit-shape array: A named array that is declared with explicit bounds.

expression: A sequence of operands, operators, and parentheses. It may be a variable
stant, a function reference, or may represent a computation.

extent: The size of one dimension of an array.

external file: A sequence of records that exists in a medium external to the executable
program.

external procedure: A procedure that is defined by an external subprogram or by a me
other than Fortran.

external subprogram: A subprogram that is not contained in a main program, module,
another subprogram.

external unit: A mechanism that is used to refer to an external file. It is identified by a n
negative INTEGER.

file: An internal file or an external file.

function: A procedure that is invoked in an expression.

function result: The data object that returns the value of a function.

function subprogram: A sequence of statements beginning with a FUNCTION statem
that is not in an interface block and ending with the corresponding END statement.

generic identifier: A lexical token that appears in an INTERFACE statement and is ass
ated with all the procedures in the interface block.

global entity: An entity identified by a lexical token whose scope is an executable progr
It may be a program unit, a common block, or an external procedure.
274 Lahey Fortran 90 Language Reference

 host
st of

or

to
 inter-

nction.

pal

ich
r both.

e-

UB-

ter-

am.

dures
nition

ic
host: A main program or subprogram that contains an internal procedure is called the
of the internal procedure. A module that contains a module procedure is called the ho
the module procedure.

host association: The process by which an internal subprogram, module subprogram,
derived type definition accesses entities of its host.

initialization expression: An expression that can be evaluated at compile time.

implicit interface: A procedure referenced in a scoping unit other than its own is said
have an implicit interface if the procedure is an external procedure that does not have an
face block, a dummy procedure that does not have an interface block, or a statement fu

inquiry function: An intrinsic function whose result depends on properties of the princi
argument other than the value of the argument.

intent: An attribute of a dummy argument that is neither a procedure nor a pointer, wh
indicates whether it is used to transfer data into the procedure, out of the procedure, o

instance of a subprogram: The copy of a subprogram that is created when a procedure
defined by the subprogram is invoked.

interface block: A sequence of statements from an INTERFACE statement to the corr
sponding END INTERFACE statement.

interface body: A sequence of statements in an interface block from a FUNCTION or S
ROUTINE statement to the corresponding END statement.

interface of a procedure: See procedure interface.

internal file: A CHARACTER variable that is used to transfer and convert data from in
nal storage to internal storage.

internal procedure: A procedure that is defined by an internal subprogram.

internal subprogram: A subprogram contained in a main program or another subprogr

intrinsic: An adjective applied to types, operations, assignment statements, and proce
that are defined in the standard and may be used in any scoping unit without further defi
or specification.

invoke:
 To call a subroutine by a CALL statement or by a defined assignment statement.

 To call a function by a reference to it by name or operator during the evaluation of
an expression.

keyword: Statement keyword or argument keyword.

kind type parameter: A parameter whose values label the available kinds of an intrins
type.

label: See statement label.
Lahey Fortran 90 Language Reference275

Appendix D Glossary

m

 pro-

l

ers

ant

 or
shape

of a
bject of

length of a character string: The number of characters in the character string.

lexical token: A sequence of one or more characters with an indivisible interpretation.

line: A source-form record containing from 0 to 132 characters.

literal constant: A constant without a name.

local entity: An entity identified by a lexical token whose scope is a scoping unit.

main program: A program unit that is not a module, subprogram, or block data progra
unit.

module: A program unit that contains or accesses definitions to be accessed by other
gram units.

module procedure: A procedure that is defined by a module subprogram.

module subprogram: A subprogram that is contained in a module but is not an interna
subprogram.

name: A lexical token consisting of a letter followed by up to 30 alphanumeric charact
(letters, digits, and underscores).

name association: Argument association, use association, or host association.

named: Having a name.

named constant: A constant that has a name.

numeric type: INTEGER, REAL or COMPLEX type.

object: Data object.

obsolescent feature: A feature in FORTRAN 77 that is considered to have been redund
but that is still in frequent use.

operand: An expression that precedes or succeeds an operator.

operation: A computation involving one or two operands.

operator: A lexical token that specifies an operation.

pointer: A variable that has the POINTER attribute. A pointer must not be referenced
defined unless it is pointer associated with a target. If it is an array, it does not have a
unless it is pointer associated.

pointer assignment: The pointer association of a pointer with a target by the execution
pointer assignment statement or the execution of an assignment statement for a data o
derived type having the pointer as a subobject.

pointer assignment statement: A statement of the form ‘‘pointer-name => target’’.

pointer associated: The relationship between a pointer and a target following a pointer
assignment or a valid execution of an ALLOCATE statement.
276 Lahey Fortran 90 Language Reference

a

 with
 invok-

a
odule
pro-

e

table

state-
am, or

requir-
ts
f the

ter-
rt of a

pointer association: The process by which a pointer becomes pointer associated with
target.

present: A dummy argument is present in an instance of a subprogram if it is associated
an actual argument and the actual argument is a dummy argument that is present in the
ing procedure or is not a dummy argument of the invoking procedure.

procedure: A computation that may be invoked during program execution. It may be
function or a subroutine. It may be an intrinsic procedure, an external procedure, a m
procedure, an internal procedure, a dummy procedure, or a statement function. A sub
gram may define more than one procedure if it contains ENTRY statements.

procedure interface: The characteristics of a procedure, the name of the procedure, th
name of each dummy argument, and the generic identifiers (if any) by which it may be
referenced.

processor: The combination of a computing system and the mechanism by which execu
programs are transformed for use on that computing system.

program: See executable program and main program.

program unit: The fundamental component of an executable program. A sequence of
ments and comment lines. It may be a main program, a module, an external subprogr
a block data program unit.

rank: The number of dimensions of an array. Zero for a scalar.

record: A sequence of values that is treated as a whole within a file.

reference: The appearance of a data object name or subobject designator in a context
ing the value at that point during execution, or the appearance of a procedure name, i
operator symbol, or a defined assignment statement in a context requiring execution o
procedure at that point.

scalar:
 A single datum that is not an array.

 Not having the property of being an array.

scope: That part of an executable program within which a lexical token has a single in
pretation. It may be an executable program, a scoping unit, a single statement, or a pa
statement.

scoping unit: One of the following:
 A derived-type definition,

 An interface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

 A program unit or subprogram, excluding derived-type definitions, interface bodies,
and subprograms contained within it.
Lahey Fortran 90 Language Reference277

Appendix D Glossary

n,

k-one

 to

per-
icolon

ent

 to

sed

 and

po-

n-
onent,

ent
section subscript: A subscript, vector subscript, or subscript triplet in an array section
selector.

selector: A syntactic mechanism for designating:
 Part of a data object. It may designate a substring, an array element, an array sectio

or a structure component.

 The set of values for which a CASE block is executed.

shape: For an array, the rank and extents. The shape may be represented by the ran
array whose elements are the extents in each dimension.

size: For an array, the total number of elements.

specification expression: A scalar INTEGER expression that can be evaluated on entry
the program unit at the time of execution.

statement: A sequence of lexical tokens. It usually consists of a single line, but the am
sand symbol may be used to continue a statement from one line to another and the sem
symbol may be used to separate statements within a line.

statement entity: An entity identified by a lexical token whose scope is a single statem
or part of a statement.

statement function: A procedure specified by a single statement that is similar in form
an assignment statement.

statement keyword: A word that is part of the syntax of a statement and that may be u
to identify the statement.

statement label: A lexical token consisting of up to five digits that precedes a statement
may be used to refer to the statement.

stride: The increment specified in a subscript triplet.

structure: A scalar data object of derived type.

structure component: The part of a data object of derived type corresponding to a com
nent of its type.

subobject: A portion of a named data object that may be referenced or defined indepe
dently of other portions. It may be an array element, an array section, a structure comp
or a substring.

subobject designator: A name, followed by one or more of the following: component
selectors, array section selectors, array element selectors, and substring selectors.

subprogram: A function subprogram or a subroutine subprogram.

subroutine: A procedure that is invoked by a CALL statement or by a defined assignm
statement.
278 Lahey Fortran 90 Language Reference

te-
nt.

.

nd

 can

AR-
bject

ic

pe
ved

n of
ction, a
subroutine subprogram: A sequence of statements beginning with a SUBROUTINE sta
ment that is not in an interface block and ending with the corresponding END stateme

subscript: One of the list of scalar INTEGER expressions in an array element selector

subscript triplet: An item in the list of an array section selector that contains a colon a
specifies a regular sequence of INTEGER values.

substring: A contiguous portion of a scalar character string. Note that an array section
include a substring selector; the result is called an array section and not a substring.

target: A named data object specified in a type declaration statement containing the T
GET attribute, a data object created by an ALLOCATE statement for a pointer, or a subo
of such an object.

type: Data type.

type declaration statement: An INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER, LOGICAL, or TYPE statement.

type parameter: A parameter of an intrinsic data type. KIND= and LEN= are the type
parameters.

type parameter values: The values of the type parameters of a data entity of an intrins
data type.

ultimate component: For a derived-type or a structure, a component that is of intrinsic ty
or has the POINTER attribute, or an ultimate component of a component that is a deri
type and does not have the POINTER attribute.

undefined: For a data object, the property of not having a determinate value.

use association: The association of names in different scoping units specified by a USE
statement.

variable: A data object whose value can be defined and redefined during the executio
an executable program. It may be a named data object, an array element, an array se
structure component, or a substring.

vector subscript: A section subscript that is an INTEGER expression of rank one.

whole array: A named array.
Lahey Fortran 90 Language Reference279

Appendix D Glossary
280 Lahey Fortran 90 Language Reference

E ASCII Character Set
cters
) are

ation
FORTRAN programs may use the full ASCII Character Set as listed below. The chara
are listed in collating sequence from first to last. Characters preceded by up arrows (^
ASCII Control Characters.

DOS uses <control-Z> (^Z) for the end-of-file delimiter and <control-M> (^M) for car-
riage return. To enter these two characters in a CHARACTER constant, use concaten
and the CHAR function.
Lahey Fortran 90 Language Reference281

Appendix E ASCII Character Set
Attempting to input or output ^Z (end-of-file), ̂ M (new line), or ̂C (break) in a sequential
file is not recommended and may produce undesirable results.

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description

^@ 00 0 NUL null<R>

^A 01 1 SOH start of heading

^B 02 2 STX start of text

^C 03 3 ETX break, end of text

^D 04 4 EOT end of transmission

^E 05 5 ENQ enquiry

^F 06 6 ACK acknowledge

^G 07 7 BEL bell

^H 08 8 BS backspace

^I 09 9 HT horizontal tab

^J 0A 10 LF line feed

^K 0B 11 VT vertical tab

^L 0C 12 FF form feed

^M 0D 13 CR carriage return

^N 0E 14 SO shift out

^O 0F 15 SI shift in

^P 10 16 DLE data link escape

^Q 11 17 DC1 device control 1

^R 12 18 DC2 device control 2

^S 13 19 DC3 device control 3

^T 14 20 DC4 device control 4

^U 15 21 NAK negative acknowledge
282 Lahey Fortran 90 Language Reference

^V 16 22 SYN synchronous idle

^W 17 23 ETB end of transmission block

^X 18 24 CAN cancel

^Y 19 25 EM end of medium

^Z 1A 26 SUB end-of-file

^[1B 27 ESC escape

^\ 1C 28 FS file separator

^] 1D 29 GS group separator

^^ 1E 30 RS record separator

^ 1F 31 US unit separator

20 32 SP space, blank

! 21 33 ! exclamation point

“ 22 34 “ quotation mark

23 35 # number sign

$ 24 36 $ dollar sign

% 25 37 % percent sign

& 26 38 & ampersand

‘ 27 39 ‘ apostrophe

(28 40 (left parenthesis

) 29 41) right parenthesis

* 2A 42 * asterisk

+ 2B 43 + plus

, 2C 44 , comma

- 2D 45 - hyphen, minus

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description
Lahey Fortran 90 Language Reference283

Appendix E ASCII Character Set
. 2E 46 . period, decimal point

/ 2F 47 / slash, slant

0 30 48 0 zero

1 31 49 1 one

2 32 50 2 two

3 33 51 3 three

4 34 52 4 four

5 35 53 5 five

6 36 54 6 six

7 37 55 7 seven

8 38 56 8 eight

9 39 57 9 nine

: 3A 58 : colon

; 3B 59 ; semicolon

< 3C 60 < less than

= 3D 61 = equals

> 3E 62 > greater than

? 3F 63 ? question mark

@ 40 64 @ commercial at sign

A 41 65 A uppercase A

B 42 66 B uppercase B

C 43 67 C uppercase C

D 44 68 D uppercase D

E 45 69 E uppercase E

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description
284 Lahey Fortran 90 Language Reference

F 46 70 F uppercase F

G 47 71 G uppercase G

H 48 72 H uppercase H

I 49 73 I uppercase I

J 4A 74 J uppercase J

K 4B 75 K uppercase K

L 4C 76 L uppercase L

M 4D 77 M uppercase M

N 4E 78 N uppercase N

O 4F 79 O uppercase O

P 50 80 P uppercase P

Q 51 81 Q uppercase Q

R 52 82 R uppercase R

S 53 83 S uppercase S

T 54 84 T uppercase T

U 55 85 U uppercase U

V 56 86 V uppercase V

W 57 87 W uppercase W

X 58 88 X uppercase X

Y 59 89 Y uppercase Y

Z 5A 90 Z uppercase Z

[5B 91 [left bracket

\ 5C 92 \ backslash

] 5D 93] right bracket

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description
Lahey Fortran 90 Language Reference285

Appendix E ASCII Character Set
^ 5E 94 ^ up-arrow, circumflex, caret

_ 5F 95 UND back-arrow, underscore

‘ 60 96 GRA grave accent

a 61 97 LCA lowercase a

b 62 98 LCB lowercase b

c 63 99 LCC lowercase c

d 64 100 LCD lowercase d

e 65 101 LCE lowercase e

f 66 102 LCF lowercase f

g 67 103 LCG lowercase g

h 68 104 LCH lowercase h

i 69 105 LCI lowercase i

j 6A 106 LCJ lowercase j

k 6B 107 LCK lowercase k

l 6C 108 LCL lowercase l

m 6D 109 LCM lowercase m

n 6E 110 LCN lowercase n

o 6F 111 LCO lowercase o

p 70 112 LCP lowercase p

q 71 113 LCQ lowercase q

r 72 114 LCR lowercase r

s 73 115 LCS lowercase s

t 74 116 LCT lowercase t

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description
286 Lahey Fortran 90 Language Reference

u 75 117 LCU lowercase u

v 76 118 LCV lowercase v

w 77 119 LCW lowercase w

x 78 120 LCX lowercase x

y 79 121 LCY lowercase y

z 7A 122 LCZ lowercase z

{ 7B 123 LBR left brace

| 7C 124 VLN vertical line

} 7D 125 RBR right brace

~ 7E 126 TIL tilde

7F 127 DEL,RO delete, rubout

Table 22: ASCII Chart

Characte
r

HEX
Value

Decimal
Value

ASCII
Abbr.

Description
Lahey Fortran 90 Language Reference287

Appendix E ASCII Character Set
288 Lahey Fortran 90 Language Reference

Index
A
A edit descriptor 27
ABS function 59, 250
ACCESS= specifier 144, 182
ACHAR function 59, 257
ACOS function 60, 255
ACOSD function 265
action statement 271
ACTION= specifier 144, 182
actual argument 271
adjustable array 14
ADJUSTL function 60, 257
ADJUSTR function 61, 257
ADVANCE= specifier 199, 236
AIMAG function 61, 250
AIMAX0 function 252
AIMIN0 function 252
AINT function 62, 250
AJMAX0 function 252
AJMIN0 function 252
ALGAMA function 265
ALL function 62, 259
allocatable array 12, 271
ALLOCATABLE attribute 8
ALLOCATABLE statement 34,

63–64
ALLOCATE statement 18, 37, 64–

65
ALLOCATED function 66, 259,

261
ALOG function 255
ALOG10 function 255
alternate return 48
AMAX0 function 252
AMAX1 function 252
AMIN0 function 252
AMIN1 function 252
AMOD function 252
ANINT function 66, 250
ANY function 67, 259
apostrophe edit descriptor 29
apostrophes 29
argument 271
argument association 271
argument keyword 271
arguments
alternate return 48
intent 47
keyword 47
optional 48
procedure 46–49

arithmetic IF statement 33, 68
arithmetic operators 20
array 271
array constructor 14
array element 10, 271
array element order 10
array pointer 12, 271
array reference 10
array section 11, 271
arrays 9–15

adjustable 14
allocatable 12
assumed shape 13
assumed size 13
automatic 14
constructor 14
dynamic 12
element 10
element order 10
pointer 12
reference 10
section 11
subscript triplet 11
vector subscript 11

array-valued 271
ASIN function 69, 255
ASIND function 265
ASSIGN statement 37, 70
assigned GOTO statement 33, 69
assignment and storage statements 37

38
assignment statement 37, 70–71, 271
assignments

defined 52
ASSOCIATED function 72, 261
association 271
assumed-shape array 13
assumed-size array 271
assumed-sized array 13
Lahey F
–

asterisk comment character 3
ATAN function 72, 255
ATAN2 function 73, 255
ATAN2D function 265
ATAND function 265
attribute 8–9, 271
automatic array 14
automatic data object 272

B
B edit descriptor 25
BACKSPACE statement 22, 36, 73–

74
belong 272
BIT_SIZE function 74, 261
BITEST function 263
BJTEST function 263
BLANK= specifier 144, 182
blanks 1, 3
block 272
block data 54
block data program unit 272
BLOCK DATA statement 38, 54, 75
BLOCKSIZE= specifier 144, 182
BN edit descriptor 29
bounds 272
BREAK subroutine 75, 267
BTEST function 76, 263
BZ edit descriptor 29

C
C comment character 3
CABS function 250
CALL statement 33, 77
CARG function 79, 267
carriage control 23
CARRIAGECONTROL=

specifier 144, 182
CASE construct 81
CASE DEFAULT 81
CASE statement 33, 81, 82–83
CCOS function 255
CDABS function 250
CDCOS function 255
CDEXP function 255
ortran 90 Language Reference 289

Index
CDLOG function 255
CDSIN function 256
CDSQRT function 256
CEILING function 83, 250
CEXP function 255
CHAR function 84, 257
character 272
CHARACTER constant edit

descriptors 29
CHARACTER data type 4, 7
CHARACTER edit

descriptor 27, 29
CHARACTER literal 7
character set 1
CHARACTER statement 34, 85–

87
character string 272
CLOG function 255
CLOSE statement 37, 87–88
CMPLX function 88, 250
collating sequence 272
colon edit descriptor 29
column 3
comments 3

asterisk 3
trailing 3

common block 35, 57, 89, 272
COMMON statement 35, 89–91
COMPLEX data type 4, 6
COMPLEX literal 6
COMPLEX statement 35, 91–92
component 272
computed GOTO statement 33,

93
concatenation operator 20
conformable 272
conformance 272
CONJG function 93, 250
connected 272
constant 5
constant expression 272
construct 272
construct name 40
constructors

array 14
structure 17

constructs
executable 40

CONTAINS statement 38, 46,
94–95
290 Lahey Fortran 90 Languag
continuation character 4
continuation line 3, 4
CONTINUE statement 33, 95
control edit descriptors 28
control statements 33–34
COS function 95, 255
COSD function 265
COSH function 96, 255
COTAN function 265
COUNT function 96, 259
CPU_TIME subroutine 97, 264
CSHIFT function 98, 259
CSIN function 256
CSQRT function 256
CYCLE statement 33, 99

D
D edit descriptor 25
DABS function 250
DACOS function 255
DACOSD function 265
DASIN function 255
DASIND function 265
data 4–18, 272

literal 5
named 7

data edit descriptors 24
data entity 273
data object 273
DATA statement 35, 99–101
data type 273
data types

CHARACTER 4, 7
COMPLEX 4, 6
DOUBLE PRECISION 4
INTEGER 4
LOGICAL 4, 7
REAL 4, 6

data types INTEGER 6
DATAN function 255
DATAN2 function 255
DATAN2D function 265
DATAND function 265
DATE_AND_TIME subroutine 101,

264
datum 273
DBLE function 103, 250
DCMPLX function 250
DCONJG function 250
DCOS function 255

DCOSD function 265
DCOSH function 255
DCOTAN function 265
DDIM function 251
DEALLOCATE statement 38, 103–

104
deferred-shape specifier 12
definable 273
defined 273
defined assignment 52
defined assignment statement 273
defined operation 273
defined operations 51
DELIM= specifier 144, 182
DERF function 265
DERFC function 265
derived type component reference 17
derived types 15–17, 54, 273

component reference 17
declaration 16
definition 15
structure constructor 17

derived-type definition 15
derived-type statement 104
DEXP function 255
DFLOAT function 250
DFLOTI function 253
DFLOTJ function 253
DGAMMA function 265
DIGITS function 105, 261
DIM function 105, 251
DIMAG function 250
DIMENSION attribute 8
DIMENSION statement 9, 35, 106
DINT function 250
DIRECT= specifier 144
disassociated 273
DLGAMA function 265
DLL_EXPORT statement 107
DLL_IMPORT statement 107
DLOG function 255
DLOG10 function 255
DMAX1 function 252
DMIN1 function 252
DMOD function 252
DNINT function 250
DO statement 33, 109–110
DOT_PRODUCT function 110, 259
DOUBLE PRECISION data type 4
DOUBLE PRECISION statement 35,
e Reference

Index
111–112
DPROD function 112, 251
DREAL function 250
DSIGN function 254
DSIN function 256
DSIND function 265
DSINH function 256
DSQRT function 256
DTAN function 256
DTAND function 265
DTANH function 256
dummy argument 273
dummy array 273
dummy pointer 273
dummy procedure 49, 273
DVCHK subroutine 113, 267
dynamic arrays 12

E
E edit descriptor 25
edit descriptors 24–30

A 27
apostrophe 29
B 25
BN 29
BZ 29
CHARACTER 27, 29
CHARACTER constant 29
colon 29
control 28
D 25
data 24
E 25
EN 26
ES 26
F 25
G 27
generalized 27
H 30
I 25
INTEGER 25
L 27
LOGICAL 27
numeric 25
O 25
P 29
position 28
quotation mark 29
REAL 25
S 29
slash 28
SP 29
SS 29
T 28
TL 28
TR 28
X 28
Z 25

elemental 273
elemental procedure 42
ELSE IF statement 33, 113
ELSE statement 33, 114, 138
ELSEWHERE statement 33, 114, 234
EN edit descriptor 26
END DO statement 33, 116
END IF statement 33, 118, 138
END SELECT statement 34, 81, 118
END statement 38, 115–116
END TYPE statement 15
END WHERE statement 34, 119, 234
END= specifier 199, 236
ENDFILE statement 22, 37, 117
entity 274
ENTRY statement 34, 119–120
EOR= specifier 199, 236
EOSHIFT function 121, 259
EPSILON function 122, 261
EQUIVALENCE statement 35, 123–

124
ERF function 265
ERFC function 265
ERR= specifier 74, 87, 117, 144, 182,

199, 206, 236
ERROR subroutine 124, 267
ES edit descriptor 26
executable construct 274
executable constructs 40
executable program 274
executable statement 274
EXIST= specifier 144
EXIT statement 34, 125
EXIT subroutine 125, 267
EXP function 125, 255
explicit interface 54, 274
explicit interfaces 49
explicit-shape array 274
EXPONENT function 126, 251
expression 274
expressions 18–52
extent 274
Lahey F
EXTERNAL attribute 8
external file 274
external function 45
external procedure 41, 274
EXTERNAL statement 35, 126
external subprogram 274
external unit 274

F
F edit descriptor 25
file 274
file position 21
file types 22–23
FILE= specifier 144, 182
files 21–23

carriage control 23
formatted direct 22
formatted sequential 22
internal 23
position 21
transparent 23
unformatted direct 23
unformatted sequential 22

fixed source form 2
FLEN= specifier 144
FLOAT Function 253
FLOATI function 253
FLOATJ function 253
FLOOR function 127, 251
FLUSH subroutine 128, 267
FMT= specifier 199, 236
FORM= specifier 144, 182
format control 24
format specification 24
FORMAT statement 24, 37, 128–130
formatted direct file 22
formatted input/output 24–30
formatted sequential file 22
FORMATTED= specifier 144
FRACTION function 131, 251
free source form 3
function 274
function reference 44
function result 274
FUNCTION statement 38, 45, 131–

132
function subprogram 274
functions 43

external 45
reference 44
ortran 90 Language Reference 291

Index
statement 45

G
G edit descriptor 27
GAMMA function 265
Gamma function 153
generalized edit descriptor 27
generic identifier 274
generic interfaces 51
generic procedure 42
GETCL subroutine 132, 267
GETENV function 133
global data 54
global entity 274
GOTO

computed 33, 93
GOTO statement 34, 125, 133,

157

H
H edit descriptor 30
HFIX function 251
Hollerith constant 30
host 275
host association 57, 275
HUGE function 134, 261

I
I edit descriptor 25
I2ABS function 250
I2DIM function 251
I2MAX0 function 252
I2MIN0 function 252
I2MOD function 252
I2NINT function 253
I2SIGN function 254
IABS function 250
IACHAR function 134, 257
IAND function 135, 263
IBCLR function 135, 263
IBITS function 136, 263
IBSET function 136, 263
ICHAR function 137, 257
IDIM function 251
IDINT function 251
IDNINT function 253
IEOR function 138, 263
IF construct 138
IF statement 34, 140
292 Lahey Fortran 90 Languag
IFIX function 251
IF-THEN statement 34, 138, 139
IIABS function 250
IIAND function 263
IIBCLR function 263
IIBITS function 263
IIBSET function 263
IIDIM function 251
IIDINT function 251
IIDNNT function 253
IIEOR function 263
IIFIX function 251
IINT function 251
IIOR function 263
IISHFT function 263
IISHFTC function 263
IISIGN function 254
IMAX0 function 252
IMAX1 function 252
IMIN0 function 252
IMIN1 function 252
IMOD function 252
implicit interface 275
IMPLICIT statement 8, 35, 141
implicit typing 8
implied-do 100, 191, 199, 236
INCLUDE line 142
INDEX function 143, 257
ININT function 253
initialization expression 19, 275
INOT function 264
input/output 21–32

edit descriptors 24–30
editing 24–32
formatted 24–30
list-directed 30
namelist 32
non-advancing 21, 22
statements 36–37

input/output units 21
preconnected 21

INQUIRE statement 37, 144–147
inquiry function 275
instance of a subprogram 275
INT function 147, 251
INT2 function 251
INT4 function 251
INTEGER data type 4, 6
INTEGER division 21
INTEGER edit descriptors 25

INTEGER literal 6
INTEGER statement 35, 148–150
intent 275
INTENT attribute 8, 47
INTENT statement 35, 150
interface block 50, 275
interface body 275
INTERFACE statement 38, 49, 50,

151–??
interfaces 49–53

explicit 49, 54
generic 51

internal file 23, 275
internal procedure 41, 46, 275
internal subprogram 275
intrinsic 275
INTRINSIC attribute 9
intrinsic data types 4
intrinsic operations 20
INTRINSIC statement 35, 153
INTRUP subroutine 154, 267
INVALOP subroutine 155, 268
invoke 275
IOR function 156, 185, 229, 263
IOSTAT= specifier 74, 87, 117, 144,

182, 199, 206, 236
IOSTAT_MSG subroutine 156, 268
ISHFT function 157, 263
ISHFTC function 157, 263
ISIGN function 254
IZEXT function 266
IZEXT2 function 266

J
JIABS function 250
JIAND function 263
JIBCLR function 263
JIBITS function 263
JIBSET function 263
JIDIM function 251
JIDINT function 251
JIDNNT function 253
JIEOR function 263
JIFIX function 251
JINT function 251
JIOR function 263
JISHFT function 263
JISHFTC function 263
JISIGN function 254
JMAX0 function 252
e Reference

Index

,
JMAX1 function 252
JMIN0 function 252
JMIN1 function 252
JMOD function 252
JNINT function 253
JNOT function 264
JZEXT function 266
JZEXT2 function 266
JZEXT4 function 266

K
keyword 275
keyword argument 47
kind 4
KIND function 158, 261
kind type parameter 4, 275

L
L edit descriptor 27
label 275
LBOUND function 158, 259, 261
LEN function 159, 257, 261
LEN_TRIM function 160
length 5
length of a character string 276
length type parameter 5
LENTRIM function 257
lexical token 276
LGE function 160, 257
LGT function 161, 257
line 276
list-directed formatting 30
list-directed input/output 30
literal constant 5, 276
literal data 5
literals

CHARACTER 7
COMPLEX 6
INTEGER 6
LOGICAL 7
REAL 6

LLE function 161, 257
LLT function 162, 257
local entity 276
LOG function 162, 255
LOG10 function 163, 255
LOGICAL data type 4, 7
LOGICAL edit descriptor 27
LOGICAL function 163, 264
LOGICAL literal 7
logical operators 20
LOGICAL statement 35, 164–165

M
main program 53, 276
masked array assignment 233
MATMUL function 166, 259
MAX function 167, 252
MAX0 function 252
MAX1 function 252
MAXEXPONENT function 167, 261
MAXLOC function 168, 259
MAXVAL function 169, 259
MERGE function 169, 259
MIN function 170, 252
MIN0 function 252
MIN1 function 252
MINEXPONENT function 171, 261
MINLOC function 171, 260
MINVAL function 172, 260
MOD function 173, 252
module 276
module procedure 56, 276
MODULE PROCEDURE

statement 36, 174
MODULE statement 38, 55, 173–174
module subprogram 276
modules 54

name conflicts 56
use 56

MODULO function 175, 253
MVBITS subroutine 176, 263, 264

N
name 276
name association 276
NAME= specifier 144
named constant 276
named data 7
NAMED= specifier 144
namelist formatting 32
namelist input/output 32
NAMELIST statement 32, 35, 176–

177
names 1

length 1
NBREAK subroutine 177, 268
NDPERR function 177
NDPERR subroutine 268
NDPEXC subroutine 178, 268
Lahey F
NEAREST function 179, 253
NEXTREC= specifier 144
NINT function 179, 253
NML= specifier 32, 199, 236
non-advancing input/output 22
NOT function 180, 264
NULL function 264
NULLIFY statement 38, 180
NUMBER= specifier 144
numeric edit descriptors 25
numeric type 276

O
O edit descriptor 25
obsolescent feature 276
obsolescent features 242
OFFSET function 181, 268
OPEN statement 21, 37, 181–184
OPENED= specifier 144
operand 276
operation 276
operations

defined 51
intrinsic 20

operator 276
operators 20

arithmetic 20
concatenation 20
logical 20

optional argument 48
OPTIONAL attribute 9, 48
OPTIONAL statement 36, 48, 184
OVEFL subroutine 184, 268

P
P edit descriptor 29
PACK function 185, 229, 260
PAD= specifier 144, 182
PARAMETER attribute 8
PARAMETER statement 36, 186
PAUSE statement 34, 186
pointer 276
pointer assignment 276
pointer assignment statement 18, 38

187, 276
pointer associated 276
pointer association 277
POINTER attribute 8, 18
POINTER function 188, 268
POINTER statement 18, 36, 188
ortran 90 Language Reference 293

Index
pointers 18
association 18
declaration 18
pointer assignment

statement 18
position edit descriptors 28
POSITION= specifier 144, 182
PRECFILL subroutine 189, 268
PRECISION function 189, 261
pre-connected units 21
present 277
PRESENT function 48, 190, 261
PRINT statement 37, 190–192
PRIVATE attribute 8
PRIVATE statement 15, 36, 193
procedure 277
procedure arguments 46–49
procedure interface 277
procedures 41–53

arguments 46–49
dummy 49
elemental 42
external 41
function 43
generic 42
interface 49–53
internal 41, 46
module 56
specific 42
subroutine 42

processor 277
PRODUCT function 194, 260
program 277
PROGRAM statement 38, 53,

194
program structure statements 38
program unit 277
program units 53–56

block data 54
main program 53
module 54

PROMPT subroutine 195, 268
PUBLIC attribute 8
PUBLIC statement 36, 195

Q
quotation mark edit descriptor 29
quotation marks 29
294 Lahey Fortran 90 Languag
R
RADIX function 196, 261
RANDOM_NUMBER

subroutine 197, 264
RANDOM_SEED subroutine 197,

264
RANGE function 198, 261
rank 277
READ statement 37, 198–200
READ= specifier 144
READWRITE= specifier 144
REAL data type 4, 6
REAL edit descriptors 25
REAL function 201, 253
REAL literal 6
REAL statement 36, 201–203
RECL= specifier 144, 182
record 277
recursion 46
RECURSIVE attribute 46
reference 277
relational operators 20
REPEAT function 203, 257
RESHAPE function 15, 204, 260
RESULT option 46
RETURN statement 34, 205
REWIND statement 22, 37, 205
RRSPACING function 206, 253

S
S edit descriptor 29
SAVE attribute 9
SAVE statement 36, 207
scalar 277
scale factor 29
SCALE function 208, 253
SCAN function 208, 258
scope 56, 277
scoping unit 39, 54, 57, 277
section subscript 278
SEGMENT function 209, 268
SELECT CASE statement 34, 81,

209–210
SELECTED_INT_KIND function 4,

210, 261
SELECTED_REAL_KIND

function 5, 211, 261
selector 278
SEQUENCE statement 15, 36, 211
SEQUENTIAL= specifier 144

SET_EXPONENT function 212, 253
shape 278
SHAPE function 212, 260, 262
SIGN function 213, 254
SIN function 213, 256
SIND function 265
SINH function 214, 256
size 278
SIZE function 214, 260, 262
SIZE= specifier 199, 236
slash edit descriptor 28
SNGL function 253
source form 2–4

fixed 2
free 3

SP edit descriptor 29
SPACING function 215, 254
special characters 1
specific procedure 42
specification expression 19, 278
specification statements 34–36
SPREAD function 215, 260
SQRT function 216, 256
SS edit descriptor 29
statement 278
statement entity 278
statement function 278
statement function statement 38, 45,

217
statement keyword 278
statement label 2, 278
statement order 39
statement separator 3, 4
statements 32

assignment and storage 37–38
control 33–34
input/output 36–37
order 39
program structure 38
specification 34–36

STATUS= specifier 87, 182
STOP statement 34, 217
stride 278
structure 278
structure component 278
structure constructor 17
subobject 278
subobject designator 278
subprogram 278
subroutine 278
e Reference

Index
SUBROUTINE statement 38, 43,
218

subroutines 42
subscript 279
subscript triplet 11, 279
substring 9, 11, 279
SUM function 219, 260
SYSTEM subroutine 219, 269
SYSTEM_CLOCK

subroutine 220, 264

T
T edit descriptor 28
TAN function 221, 256
TAND function 265
TANH function 221, 256
target 18, 279
TARGET attribute 8, 18
TARGET statement 18, 36, 222
TIMER subroutine 222
TINY function 262
TL edit descriptor 28
TR edit descriptor 28
trailing comment 3
TRANSFER function 223, 264
transparent file 23
TRANSPOSE function 224, 260
TRIM function 225, 258
type declaration statement 8, 279
type parameter 279
type parameter values 279
TYPE statement 36, 226–227

U
UBOUND function 227, 260, 262
ultimate component 279
undefined 279
UNDFL subroutine 228, 269
unformatted direct file 23
unformatted sequential file 22
UNFORMATTED= specifier 144
UNIT= specifier 74, 87, 117, 144,

182, 199, 206, 236
units 21
UNPACK function 229, 260
use association 279
USE statement 36, 56, 229–231
V
VAL function 231, 269
variable 279
vector subscript 11, 279
VERIFY Function 233
VERIFY function 258

W
WHERE construct 233–234
WHERE statement 34, 234, 235
WRITE statement 37, 236–238
WRITE= specifier 144

X
X edit descriptor 28

Y
YIELD subroutine 238

Z
Z edit descriptor 25
Lahey F
ortran 90 Language Reference 295

	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Fixed Source Form
	Free Source Form

	Data
	Intrinsic Data Types
	Kind
	Table 1: Intrinsic Data Types

	Length
	Literal Data
	INTEGER literals
	REAL literals
	COMPLEX literals
	LOGICAL literals
	CHARACTER literals

	Named Data
	Implicit Typing
	Type Declaration Statements
	Attributes

	Substrings
	Arrays
	Array References
	Array Elements
	Array Element Order
	Array Sections
	Subscript Triplets
	Vector Subscripts
	Arrays and Substrings

	Dynamic Arrays
	Allocatable Arrays
	Array Pointers
	Assumed-Shape Arrays
	Assumed-Size Arrays
	Adjustable and Automatic Arrays

	Array Constructors
	Derived Types
	Derived-Type Definition
	Declaring Variables of Derived Type
	Component References

	Structure Constructors
	Pointers
	Associating a Pointer with a Target
	Declaring Pointers and Targets

	Expressions
	Intrinsic Operations
	Table 2: Intrinsic Operators
	INTEGER Division

	Input/Output
	Pre-Connected Input/Output Units
	Files
	File Position
	File Types
	Internal Files
	Carriage Control
	Table 3: Carriage Control

	Input/Output Editing
	Format Control
	Data Edit Descriptors
	Numeric Editing
	INTEGER Editing (I, B, O, and Z)
	REAL Editing (F, D, and E)
	EN Editing
	ES Editing
	COMPLEX Editing
	LOGICAL Editing (L)
	CHARACTER Editing (A)
	Generalized Editing (G)

	Control Edit Descriptors
	Position Editing (T, TL, TR, and X)
	Slash Editing
	Colon Editing
	S, SP, and SS Editing
	P Editing
	BN and BZ Editing

	Character String Edit Descriptors
	CHARACTER String Editing
	H Editing (obsolescent)

	List-Directed Formatting
	List-Directed Input
	Table 4: List-Directed Input Editing

	List-Directed Output
	Table 5: List-Directed Output Editing

	Namelist Formatting

	Statements
	Control Statements
	Specification Statements
	Input/Output Statements
	Assignment and Storage Statements
	Program Structure Statements
	Statement Order
	Table 6: Statement Order

	Executable Constructs
	Construct Names

	Procedures
	Table 7: Procedures
	Intrinsic Procedures
	Subroutines
	Functions
	External Functions
	Statement Functions

	Internal Procedures
	Recursion
	Procedure Arguments
	Argument Intent
	Keyword Arguments
	Optional Arguments
	Alternate Returns (obsolescent)
	Dummy Procedures

	Procedure Interfaces
	Explicit Interfaces
	Generic Interfaces
	Defined Operations
	Defined Assignment

	Program Units
	Main Program
	Block Data Program Units
	Module Program Units
	Module Procedures
	Using Modules

	Scope
	Data Sharing

	Alphabetical Reference
	ABS Function
	Description
	Syntax
	Arguments
	Result
	Example

	ACHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	ACOS Function
	Description
	Syntax
	Arguments
	Result
	Example

	ADJUSTL Function
	Description
	Syntax
	Arguments
	Result
	Example

	ADJUSTR Function
	Description
	Syntax
	Arguments
	Result
	Example

	AIMAG Function
	Description
	Syntax
	Arguments
	Result
	Example

	AINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ALL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ALLOCATABLE Statement
	Description
	Syntax
	Remarks
	Example

	ALLOCATE Statement
	Description
	Syntax
	Remarks
	Example

	ALLOCATED Function
	Description
	Syntax
	Arguments
	Result
	Example

	ANINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ANY Function
	Description:
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	Arithmetic IF Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	ASIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	Assigned GOTO Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	ASSIGN Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	Assignment Statement
	Description
	Syntax
	Remarks
	Example

	ASSOCIATED Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ATAN Function
	Description
	Syntax
	Arguments
	Result
	Example

	ATAN2 Function
	Description
	Syntax
	Arguments
	Result
	Example

	BACKSPACE Statement
	Description
	Syntax
	Remarks
	Example

	BIT_SIZE Function
	Description
	Syntax
	Arguments
	Result
	Example

	BLOCK DATA Statement
	Description
	Syntax
	Example

	BREAK Subroutine
	Description
	Syntax
	Optional Arguments
	Remarks
	Example

	BTEST Function
	Description
	Syntax
	Arguments
	Result
	Example

	CALL Statement
	Description
	Syntax
	Remarks
	Example

	CARG Function
	Description
	Syntax
	Arguments
	Result
	Table 8: CARG result types

	Example

	CASE Construct
	Description
	Syntax
	Remarks
	Example

	CASE Statement
	Description
	Syntax
	Remarks
	Example

	CEILING Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CHAR Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CHARACTER Statement
	Description
	Syntax
	Remarks
	Example

	CLOSE Statement
	Description
	Syntax
	Remarks
	Example

	CMPLX Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	COMMON Statement
	Description
	Syntax
	Remarks
	Example

	COMPLEX Statement
	Description
	Syntax
	Remarks
	Example

	Computed GOTO Statement
	Description
	Syntax
	Remarks
	Example

	CONJG Function
	Description
	Syntax
	Arguments
	Result
	Example

	CONTAINS Statement
	Description
	Syntax
	Remarks
	Example

	CONTINUE Statement
	Description
	Syntax
	Example

	COS Function
	Description
	Syntax
	Arguments
	Result
	Example

	COSH Function
	Description
	Syntax
	Arguments
	Result
	Example

	COUNT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CPU_TIME Subroutine
	Description
	Syntax
	Required Arguments
	Example

	CSHIFT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CYCLE Statement
	Description
	Syntax
	Example

	DATA Statement
	Description
	Syntax
	Remarks
	Example

	DATE_AND_TIME Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	DBLE Function
	Description
	Syntax
	Arguments
	Result
	Example

	DEALLOCATE Statement
	Description
	Syntax
	Remarks
	Example

	Derived-Type Definition Statement
	Description
	Syntax
	Remarks
	Example

	DIGITS Function
	Description
	Syntax
	Arguments
	Result
	Example

	DIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	DIMENSION Statement
	Description
	Syntax
	Example

	DLL_EXPORT Statement
	Description
	Syntax
	dll-export-names is a list of procedures defined i...
	Remarks
	Example

	DLL_IMPORT Statement
	Description
	Syntax
	Example

	DO Construct
	Description
	Syntax
	Remarks
	Example

	DO Statement
	Description
	Syntax
	Remarks
	Example

	DOT_PRODUCT Function
	Description
	Syntax
	Arguments
	Result
	Example

	DOUBLE PRECISION Statement
	Description
	Syntax
	Remarks
	Example

	DPROD Function
	Description
	Syntax
	Arguments
	Result
	Example

	DVCHK Subroutine
	Description
	Syntax
	Arguments
	Example

	ELSE IF Statement
	Description
	Syntax
	Example

	ELSE Statement
	Description
	Syntax
	Example

	ELSEWHERE Statement
	Description
	Syntax
	Remarks
	Example

	END Statement
	Description
	Syntax
	Remarks
	Example

	END DO Statement
	Description
	Syntax
	Remarks
	Example

	ENDFILE Statement
	Description
	Syntax
	Remarks
	Example

	END IF Statement
	Description
	Syntax
	Remarks
	Example

	END SELECT Statement
	Description
	Syntax
	Remarks
	Example

	END WHERE Statement
	Description
	Syntax
	Example

	ENTRY Statement
	Description
	Syntax
	Remarks
	Example

	EOSHIFT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	EPSILON Function
	Description
	Syntax
	Arguments
	Result
	Example

	EQUIVALENCE Statement
	Description
	Syntax
	Remarks
	Example

	ERROR Subroutine
	Description
	Syntax
	Arguments
	Example

	EXIT Statement
	Description
	Syntax
	Example

	EXIT Subroutine
	Description
	Syntax
	Arguments
	Example

	EXP Function
	Description
	Syntax
	Arguments
	Result
	Example

	EXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	EXTERNAL Statement
	Description
	Syntax
	Remarks
	Example

	FLOOR Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	FLUSH Subroutine
	Description
	Syntax
	Arguments
	Example

	FORMAT Statement
	Description
	Syntax
	Remarks
	Example

	FRACTION Function
	Description
	Syntax
	Arguments
	Result
	Example

	FUNCTION Statement
	Description
	Syntax
	Remarks
	Example

	GETCL Subroutine
	Description
	Syntax
	Arguments
	Example

	GETENV Function
	Description
	Syntax
	Arguments
	Result
	Example

	GOTO Statement
	Description
	Syntax
	Remarks
	Example

	HUGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	IACHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IAND Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBCLR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBITS Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBSET Function
	Description
	Syntax
	Arguments
	Result
	Example

	ICHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IEOR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IF Construct
	Description
	Syntax
	Remarks
	Example

	IF-THEN Statement
	Description
	Syntax
	Remarks
	Example

	IF Statement
	Description
	Syntax
	Remarks
	Example

	IMPLICIT Statement
	Description
	Syntax
	Remarks
	Example

	INCLUDE Line
	Description
	Syntax
	Remarks
	Example

	INDEX Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	INQUIRE Statement
	Description
	Syntax
	Remarks
	Example

	INT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	INTEGER Statement
	Description
	Syntax
	Remarks
	Example

	INTENT Statement
	Description
	Syntax
	Remarks
	Example

	INTERFACE Statement
	Description
	Syntax
	Remarks
	Example

	INTRINSIC Statement
	Description
	Syntax
	Remarks
	Example

	INTRUP Subroutine
	Description
	Syntax
	Arguments
	Table 9: intary values

	Example

	INVALOP Subroutine
	Description
	Syntax
	Arguments
	Example

	IOR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IOSTAT_MSG Subroutine
	Description
	Syntax
	Arguments
	Example

	ISHFT Function
	Description
	Syntax
	Arguments
	Result
	Example

	ISHFTC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	KIND Function
	Description
	Syntax
	Arguments
	Result
	Example

	LBOUND Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	LEN Function
	Description
	Syntax
	Arguments
	Result
	Example

	LEN_TRIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	LGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	LGT Function
	Description
	Syntax
	Arguments
	Result
	Example

	LLE Function
	Description
	Syntax
	Arguments
	Result
	Example

	LLT Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOG Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOG10 Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOGICAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	LOGICAL Statement
	Description
	Syntax
	Remarks
	Example

	MATMUL Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAX Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAXEXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAXLOC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MAXVAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MERGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	MIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	MINEXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	MINLOC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MINVAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MOD Function
	Description
	Syntax
	Arguments
	Result
	Example

	MODULE Statement
	Description
	Syntax
	Remarks
	Example

	MODULE PROCEDURE Statement
	Description
	Syntax
	Remarks
	Example

	MODULO Function
	Description
	Syntax
	Arguments
	Result
	Example

	MVBITS Subroutine
	Description
	Syntax
	Arguments
	Example

	NAMELIST Statement
	Description
	Syntax
	Remarks
	Example

	NBREAK Subroutine
	Description
	Syntax
	Remarks
	Example

	NDPERR Function
	Description
	Syntax
	Arguments
	Result
	Table 10: NDPERR bits

	Example

	NDPEXC Subroutine
	Description
	Remarks
	Example

	NEAREST Function
	Description
	Syntax
	Arguments
	Result
	Example

	NINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	NOT Function
	Description
	Syntax
	Arguments
	Result
	Example

	NULLIFY Statement
	Description
	Syntax
	Example

	OFFSET Function
	Description
	Syntax
	Arguments
	Result
	Example

	OPEN Statement
	Description
	Syntax
	Remarks
	Example

	OPTIONAL Statement
	Description
	Syntax
	Example

	OVEFL Subroutine
	Description
	Syntax
	Arguments
	Example

	PACK Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	PARAMETER Statement
	Description
	Syntax
	Remarks
	Example

	PAUSE Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	Pointer Assignment Statement
	Description
	Syntax
	Remarks
	Example

	POINTER Function
	Description
	Syntax
	Arguments
	Result
	Example

	POINTER Statement
	Description
	Syntax
	Remarks
	Example

	PRECFILL Subroutine
	Description
	Syntax
	Arguments
	Example

	PRECISION Function
	Description
	Syntax
	Arguments
	Result
	Example

	PRESENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	PRINT Statement
	Description
	Syntax
	Remarks
	Example

	PRIVATE Statement
	Description
	Syntax
	Remarks
	Example

	PRODUCT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	PROGRAM Statement
	Description
	Syntax
	Remarks
	Example

	PROMPT Subroutine
	Description
	Syntax
	Arguments
	Example

	PUBLIC Statement
	Description
	Syntax
	Remarks
	Example

	RADIX Function
	Description
	Syntax
	Arguments
	Result
	Example

	RANDOM_NUMBER Subroutine
	Description
	Syntax
	Arguments
	Example

	RANDOM_SEED Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	RANGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	READ Statement
	Description
	Syntax
	Remarks
	Example

	REAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	REAL Statement
	Description
	Syntax
	Remarks
	Example

	REPEAT Function
	Description
	Syntax
	Arguments
	Result
	Example

	RESHAPE Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	RETURN Statement
	Description
	Syntax
	Remarks
	Example

	REWIND Statement
	Description
	Syntax
	Remarks
	Example

	RRSPACING Function
	Description
	Syntax
	Arguments
	Result
	Example

	SAVE Statement
	Description
	Syntax
	Remarks
	Example

	SCALE Function
	Description
	Syntax
	Arguments
	Result
	Example

	SCAN Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SEGMENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	SELECT CASE Statement
	Description
	Syntax
	Remarks
	Example

	SELECTED_INT_KIND Function
	Description
	Syntax
	Arguments
	Result
	Example

	SELECTED_REAL_KIND Function
	Description
	Syntax
	Optional Arguments
	Result
	Example

	SEQUENCE Statement
	Description
	Syntax
	Remarks
	Example

	SET_EXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	SHAPE Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIGN Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	SINH Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIZE Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SPACING Function
	Description
	Syntax
	Arguments
	Result
	Example

	SPREAD Function
	Description
	Syntax
	Arguments
	Result
	Example

	SQRT Function
	Description
	Syntax
	Arguments
	Result
	Example

	Statement Function Statement
	Description
	Syntax
	Remarks
	Example

	STOP Statement
	Description
	Syntax
	Remarks
	Example

	SUBROUTINE Statement
	Description
	Syntax
	Remarks
	Example

	SUM Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SYSTEM Subroutine
	Description
	Syntax
	Arguments
	Example

	SYSTEM_CLOCK Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	TAN Function
	Description
	Syntax
	Arguments
	Result
	Example

	TANH Function
	Description
	Syntax
	Arguments
	Result
	Example

	TARGET Statement
	Description
	Syntax
	Example

	TIMER Subroutine
	Description
	Syntax
	Arguments
	Example

	TINY Function
	Description
	Syntax
	Arguments
	Result
	Example

	TRANSFER Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	TRANSPOSE Function
	Description
	Syntax
	Arguments
	Result
	Example

	TRIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	Type Declaration Statement
	TYPE Statement
	Description
	Syntax
	Remarks
	Example

	UBOUND Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	UNDFL Subroutine
	Description
	Syntax
	Arguments
	Example

	UNPACK Function
	Description
	Syntax
	Arguments
	Result
	Example

	USE Statement
	Description
	Syntax
	Remarks
	Example

	VAL Function
	Description
	Syntax
	Arguments
	Result
	Table 11: VAL result types

	Example

	VERIFY Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	WHERE Construct
	Description
	Syntax
	Remarks
	Example

	WHERE Statement
	Description
	Syntax
	Remarks
	Example

	WRITE Statement
	Description
	Syntax
	Remarks
	Example

	YIELD Subroutine
	Description
	Syntax
	Example

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 90
	Obsolescent Features
	Popular Extensions

	New in Fortran 90
	Miscellaneous
	Data
	Operations
	Arrays
	Execution Control
	Input/Output
	Procedures
	Modules
	New Intrinsic Procedures

	Intrinsic Procedures
	Table 12: Numeric Functions
	Table 13: Mathematical Functions
	Table 14: Character Functions
	Table 15: Array Functions
	Table 16: Inquiry and Kind Functions
	Table 17: Bit Manipulation Procedures
	Table 18: Other Intrinsic Functions
	Table 19: Standard Intrinsic Subroutines
	Table 20: VAX/IBM Intrinsic Functions Without Fort...
	Table 21: Utility Procedures

	Glossary
	ASCII Character Set
	Table 22: ASCII Chart

