Lahey Fortran 90
Language Reference

Revision D

Q Recycled Paper P. O. Box 6091
Incline Village, NV 89450

eeeeeeeeeeeee

Copyright

Copyright © 1994-7 by Lahey Computer Systems, Inc. All rights reserved worldwide. This manual is
protected by federal copyright law. No part of this manual may be copied or distributed, transmitted, tran-
scribed, stored in a retrieval system, or translated into any human or computer language, in any form or
by any means, electronic, mechanical, magnetic, manual, or otherwise, or disclosed to third parties.

Trademarks

Names of Lahey products are trademarks of Lahey Computer Systems, Inc. Other brand and product
names are trademarks or registered trademarks of their respective holders.

Disclaimer

Lahey Computer Systems, Inc. reserves the right to revise its software and publications with no obliga-
tion of Lahey Computer Systems, Inc. to notify any person or any organization of such revision. In no
event shall Lahey Computer Systems, Inc. be liable for any loss of profit or any other commercial dam-
age, including but not limited to special, consequential, or other damages.

Lahey Computer Systems, Inc.
865 Tahoe Boulevard
P.O. Box 6091
Incline Village, NV 89450-6091
(702) 831-2500
Fax: (702) 831-8123

http://www.lahey.com

Technical Support
(702) 831-2500
support@lahey.com

Table of Contents

INtroducCtion........covvvviiiieii e, Y, Assignment and Storage Statements.......... 37
Manual Organizationc.ccceevevererrennens. v Program Structure Statements 38
Notational Conventions...............c...cc..ccevee.n.. vi Statement Order ..., 39

Executable CoNnstructs..........ccccocveveeeeeeniinnnns 40

Elements of Fortran.............cooeeei, 1 Construct Names..........cccoeveeeveveeevenseenas 40
Character Set.......ccccvveiiiiiiieiie e 1 Procedures......ccccoiieiiiiiiiie s 41
NAIMES ...t 1 Intrinsic Proceduresccccovvvvvvvevvvinnnn, 42
Statement Labels..........ccccooviieiiiiiiiiiieee 2 SUDroUtiNgScccvvieeiiiiiie e 42
SoUrce FOrmM ... 2 FUNCLIONS.....oiiviiicccie e 43

Fixed Source FOrmccccovviineiiiiiineee, 2 Internal Procedures.........cccccovevveeeeeiivneeenns 46
Free Source FOrmMcccoeviiiiiininnine, 3 RECUISION ..o 46
Data.......ccoooviiiiiiiiiiiii 4 Procedure Argumentscceeecuvvvvneennnn. 46
Intrinsic Data TYPes ..., 4 Procedure INterfacesccocoeueveerererene. 49
KN ..oooiiii e 4 Program UNitSccceveiiiiiee e, 53
Length...ooo e 5 Main Programcccoeeeveeeeeeeeeeeeeenenne, 53
Literal Data......cccooeeveeeviieieeieeeeee e 5 Block Data Program Units.............c........... 54
Named Data.......ccoceeeieeeiiiiiiiiiieeeeeeeeieeeceee 7 Module Program Units..............cccevennne... 54
SUDSENNGS v D SCOPE .. 56
ATTAYS oot 9 Data Sharingc.cccoeveeveeeeeieeeeeeeeeeeens 57
DyNamicC AITaysccccvvverreeeeeeeeiiiiiennnnneens 12 i
Array CoNnStrUCtOrSeevvvevieeeiniiiiiiiiieee, 14 Alphabetical Reference 59
Derved TYPEScccoveueereeeeeeceeee e 15 ABS FUNCLIONcciiiiiiiieiiiiiiee e 59
Structure CoNStruCtOrS....vvnvee i, 17 ACHAR FUNCHON......coovviiiieeiiiieeeeeee e 59
POINEISovveveieeeieeee e, 18 ACOS FUNCHON.......ooiiiiiiiiiiii 60
EXPIrESSIONS .ovviivieieeiie et eee 18 ADJUSTL Function ... 60
Intrinsic Operations.............cccceceveeeeeennenne. 20 ADJUSTR FUNCHONcoiviiieeiiiiiee e 61
INPUY/OULPUL. ...ttt 21 AIMAG FUNCtioNnc.ccvviiiiniiiiciec e 61
Pre-Connected Input/Output Units............ 21 AINT FUNCLON ..o 62
FlES ot 21 ALL Function..........ccocooiiiiiii 62
Input/Output Editing.........cccoovveiiiiiiiinee, 24 ALLOCATABLE Statement............ccccceeeen.n. 63
Format Control.........ccccccevviiiivieniiiieeeee 24 ALLOCATE Statement..........cccccvvvvcvereeennnne 64
Data Edit Descriptorsccccocvveeeriiieeeenns 24 ALLOCATED FunCtion.........ccccoeveinenennneens 66
Control Edit Descriptors...........ccvevvvvevveennns 28 ANINT FUNCHONceeieiiiiieecie e 66
Character String Edit Descriptors 29 ANY FUNCHON ...coiiiiiiiiieiiiiiecce e 67
List-Directed Formatting...........cccccveeeennn. 30 Arithmetic IF Statement (obsolescent)........... 68
Namelist Formatting..........ccccooecveeeerninenen. 32 ASIN FUNCHON ..o 69
StatemMeNtS......cccooviiiiieeee e 32 Assigned GOTO Statement (obsolescent)69
Control Statementsccccceveeeeeviiiiiiinnnnn, 33 ASSIGN Statement (obsolescent).................. 70
Specification Statementscccuvveeeee. 34 Assignment Statement.........ccccceeviiiiieniiinennn. 70
Input/Output StatementS.............cccevvvveenen. 36 ASSOCIATED Function.........ccccceeveereeeeennnnn. 72

Lahey Fortran 90 Language Reference i

Contents

ATAN FUNCLION.....uuviiciieeeieieeeeeeeeeee e, 72
ATANZ FUNCLION ...ttt 73
BACKSPACE Statementc.ccccoeeeeeennnn.. 73
BIT_SIZE FUNCtioNccceeeiiiiiiiiieeeeee e 74
BLOCK DATA Statement..............ccceeveeennnnns 75
BREAK Subroutine............cccvvveeeiieiiiiiiieeeens 75
BTEST FUNCHON......viiiiiiiieiieeeieeeeeeeeceeeeeee, 76
CALL Statement..........ccoeeeeiiiiiiiieieiieeeeii, 77
CARG FUNCHON......ccceiviiiiiieeieeee e, 79
CASE Constructccooeeeeiiiiiieeeee e 81
CASE Statement..........cccooeeeeiiiiiiiiieiieeeeeis 82
CEILING Function......cccocovvevvieiieeieiiiiiie e 83
CHAR FUNCLION.........ooovviviieeeiireviii e, 84
CHARACTER Statement...........ccccccovveeeen. 85
CLOSE Statementccooeeeeiiiiiiiiieecieeeenn. 87
CMPLX FUNCHION ..ttt 88
COMMON Statement..........ccoeeeeeieeeiiineeennn. 89
COMPLEX Statement.........cccccooeieeiiieeeennnnn. 91
Computed GOTO Statement.........cccceeeevennes 93
CONJG FUNCHONccvvieieeiieetiiee e 93
CONTAINS Statement..........cccceeeveeeiiineeennnn. 94
CONTINUE Statement..........cccoeeeviveviinneennn. 95
COS FUNCHON vt 95
COSH FUNCHONccceiviieeeeeeeceee e 96
COUNT Function.........coeeeeeeeiiiiiiiiiiieeeeiiees 96
CPU_TIME Subroutine...........cccceeveeeeneeeenn. 97
CSHIFT FUNCtioNc.ocoevvviiieieeeeeiee e, 98
CYCLE Statement........ccccceeviiivviiiiiiiiieeeeies 99
DATA Statement.........ccocoeeiiiieeiiiiiieeeiee, 99
DATE_AND_TIME Subroutine 101
DBLE FUuNnctioncccoovveiiviiiiiiieeccceiieeeeees 103
DEALLOCATE Statement.........c....cc.uune..e. 103
Derived-Type Definition Statement............ 104
DIGITS Function........cccoeeeeviiiiiiieeeeeeiie, 105
DIM FUNCHON ...t 105
DIMENSION Statement........ccccooeeeeeeevnnnnnnn. 106
DLL_EXPORT Statement............ccccceeennnnn. 107
DLL_IMPORT Statement............ccceecvvvnnee. 107
(D10 N 0] o111 ¢ U [o! 108
DO Statement.........ccooeeviiiiiiiiieeeie e, 109
DOT_PRODUCT Function...........ccccceeeueee. 110
DOUBLE PRECISION Statement.............. 111
DPROD FUunctioncccceeeeieeieeiiiieeeeeeeenennn, 112
DVCHK Subroutingcccoevveeeieeeiiiniinnnnnn. 113

Lahey Fortran 90 Language Reference

ELSE IF Statementccoooevvieiiiiieeeennnn. 113
ELSE Statement............ccccoeeviieiiiineeeeeee, 114
ELSEWHERE Statement..........c....ccceeeeene.. 114
END Statementcooeeeiiiiiiiii e, 115
END DO Statement............cccoeveevviiieiiiieeennnn. 116
ENDFILE Statement.........cccooeoveeeiiiieeeinnnnnn. 117
END IF Statement..............ocooeeeeiiiiniiiineee. 118
END SELECT Statement............ccoeeeevveneeeee. 118
END WHERE Statement.............ccccoeeeeennne.. 119
ENTRY Statementccooeeiiiiiiiieeeennnn. 119
EOSHIFT FUunNCtion.........ccoeeeeeiieviieeeeeeeeenenn, 121
EPSILON FUunction........cccoeeeeeeveevvieeeeeeeeennn, 122
EQUIVALENCE Statement........................ 123
ERROR Subrouting........cccooovvevvveeeeeeeieevinnn. 124
EXIT Statementcooooeeeeiiiiiiiiieeeeeeeee. 125
EXIT Subroutin€.........ccoovviieeeiiiiiiieeeeeeeen, 125
EXP FUNCHON ...uuiiiciieie e 125
EXPONENT Functioncceeeeveeeviviiineenns 126
EXTERNAL Statementcccceeevveeenn. 126
FLOOR FUNCHON ..o 127
FLUSH Subroutinecocovveeveeiiiiiiieneeens 128
FORMAT Statement..........cccocceeeiiiieneeennnnns 128
FRACTION Functionccceeeeveeeiiviieeeens 131
FUNCTION Statementc.cceevevvveeeennnnnnns 131
GETCL Subroutingcocvvveeieeiiiiiiiiineeeees 132
GETENV Functionccceeeviiiiviieveeieeeeeee, 133
GOTO Statementcoeeeeeeiieeeeeeieeeeeeis 133
HUGE FUunctioncccoeeiieiiiiiieieneeceeeie, 134
IACHAR Function........cccceeeeieiiieviieeeeeeeeeen, 134
IAND FUNCHON ...ovveiciiiieee e, 135
IBCLR FUNCtioN.......ccoeeeeviiiiieieeeeeiieeeeeeeeee, 135
IBITS FUNCLION ..ouvciiiieeee e, 136
IBSET FUNCHON ... 136
ICHAR FUNCLION.......ooiiiiiiiiiieeeeceecee e 137
IEOR FUNCLION ..o 138
IF CONSIIUCTE ..o 138
IF-THEN Statement.........ccc.oooieiiiiiieeiinn, 139
IF Statement.........ccooevveeiiieeeeeeeeeeee e 140
IMPLICIT Statement..........ccoooeeeiiieiiineeen. 141
INCLUDE Lin€....covvveiieeiiiiiieeeeeeeeeeeeeeeee 142
INDEX FUNCLION ..., 143
INQUIRE Statement..........cccceeevviieviiiiinennns 144
INT Function.......ccccoeeeiiiiiiiieeeee e 147
INTEGER Statementcccooeevveeevivvneeennn. 148

Contents

INTENT Statement
INTERFACE Statement
INTRINSIC Statement
INTRUP Subroutine
INVALOP Subroutine
IOR Function
IOSTAT_MSG Subroutine
ISHFT Function
ISHFTC Function
KIND Function
LBOUND Function
LEN Function
LEN_TRIM Function
LGE Function
LGT Function
LLE Function
LLT Function
LOG Function
LOG10 Function
LOGICAL Function
LOGICAL Statement
MATMUL Function
MAX Function
MAXEXPONENT Function
MAXLOC Function
MAXVAL Function
MERGE Function
MIN Function
MINEXPONENT Function
MINLOC Function
MINVAL Function
MOD Function
MODULE Statement
MODULE PROCEDURE Statement
MODULO Function
MVBITS Subroutine
NAMELIST Statement
NBREAK Subroutine
NDPERR Function
NDPEXC Subroutine
NEAREST Function
NINT Function
NOT Function
NULLIFY Statement

OFFSET FUuNctionccooeeevviiiieieeeeeeicieeeeeees 181
OPEN Statementcccooviiiiieiiiiiecee e, 181
OPTIONAL Statement........c.ccceeeeiiiieeeennnnnns 184
OVEFL Subroutin€ccoeeeeiiiiiiiiiiineeeeeen, 184
PACK FUNCHION......ccvviiiieeeiiiiee e 185
PARAMETER Statement..........ccccoeevvvuneeenn. 186
PAUSE Statement (obsolescent).................. 186
Pointer Assignment Statement..................... 187
POINTER FUNCHON......ccoeeeiiiieeeeeeeeeie e 188
POINTER Statement............ccooeeeeiviievinnenn. 188
PRECFILL Subroutin€..........cccveeeveerieennnnn... 189
PRECISION Function.........ccoeeeeeeeiiiviiieeeeens 189
PRESENT Function.........cccccoovvvviiiieeeeeennnnnn. 190
PRINT Statementccoeeeviiieiiieeieeee. 190
PRIVATE Statement........cccoccoveeeeviiieeiennnn. 193
PRODUCT Function..........ccoeeeeeeeeeiiiiiieeeeens 194
PROGRAM Statement..........ccoeeeeveeveennennnn. 194
PROMPT Subroutineccoooevvvvveeeeeerennnn. 195
PUBLIC Statement.............cccoeeeeiiiieiiieeee. 195
RADIX FUNCLION ..., 196
RANDOM_NUMBER Subroutine 197
RANDOM_SEED Subroutine 197
RANGE FUuNCtion.........cooevveiiieiiieeeeeeeeeie, 198
READ Statement.........cocoeeeeievieeeieiieeeieeeen 198
REAL Function.......cccoooviiiiiieecivieeeeeeeeeiee, 201
REAL Statementcccoeeeeeeiiiiiveieeeeieeeeeenn, 201
REPEAT FUNCHONuieiieeeiiieeeeeeeeeee e 203
RESHAPE Function..........cccoeeeeeeieiiiiiii e, 204
RETURN Statement.........cccooovvvveeieiiiieeennnnnns 205
REWIND Statement..........cccoeeeveveieivineeeennnn. 205
RRSPACING Function..........ccccveeeeeeveevvnnnnn. 206
SAVE Statementcooeeeeviiiieiiieeeeeeeenen, 207
SCALE FUNCLION......viiiiiiiiiieee e 208
SCAN FUNCHION ..o 208
SEGMENT FUNCHON.......coiiiiieiieeeeeeeeeee 209
SELECT CASE Statement.........ccccceeeeeeeenee. 209
SELECTED_INT_KIND Function.............. 210
SELECTED_REAL_KIND Function.......... 211
SEQUENCE Statement...........ccccceeeeeeeevennnnn. 211
SET_EXPONENT Functioncccccooves 212
SHAPE FUNCLiONiiiiieieeeeeeeeee e, 212
SIGN FUNCLONcovviiiieiiieiee e 213
SIN FUNCtioncccoeveiiiiiieeeeee e, 213
SINH FUNCLION ...cveiiceee e, 214

Lahey Fortran 90 Language Reference i

Contents

SIZE FUNCLIONcoevveeiiveiiiieiiccee e, 214
SPACING FUNCtion............cevvvuviveniiieiieeenns 215
SPREAD FUunctioncc.ccoovvvieiieeeieiiienee, 215
SOQRT FUNCLION.......cooeveeeeeereeeiiierivnn 216
Statement Function Statement..................... 217
STOP Statementccccceveiiiiiiiiiieeeeee, 217
SUBROUTINE Statement.........cccceeeeeieeennnn. 218
SUM FUNCHON c.vvvvieiccieee e, 219
SYSTEM Subrouting.........ccooovvvvveeeeeeenennnne. 219
SYSTEM_CLOCK Subroutine................... 220
TAN FUNCLION.....ccoieeeee e 221
TANH Function.......ccooooeviieeeiieeeeeeee e 221
TARGET Statement..........ccooeeeveiiiiiieeeennnn. 222
TIMER Subroutine............cccoevvvevvvvvviiiirnnnnns 222
TINY FUNCLiON ..evviiceee e 223
TRANSFER Functionccccevvvvvvvevinnn, 223
TRANSPOSE Function........cccccvvvvvvvveeennnnnn. 224
TRIM FUNCLION.....covviiiiiieee e 225
Type Declaration Statement...........ccccco....... 225
TYPE Statement..........cccoeevviiiiiiiiciieeeeeen, 226
UBOUND FUnCtion...........coovvveeeeeeeeeiiiinnnnn. 227
UNDFL Subroutingcceveeveeeiiieviiceeeenens 228
UNPACK Functionc..ccoovvviieieeeeeiiiiinnnn. 229
USE Statementcooeiviiiiiiin e 229
VAL FUNCLON.....coooiiiiiieieeeceee e, 231
VERIFY Functionccccoeeeiiiiiviviieeeeeeeeeie, 233
WHERE Constructcccoooviiiiiiiiieeeeis 233
WHERE Statement..........ccc..cooeeiiiiiieiennens 235
WRITE Statementcccceeeevviieeiiiieeeeennnnns 236
YIELD Subroutingcccooeevvviiiieieeiiiiiinnnn. 238
Fortran 77 Compatibility 241
Different Interpretation Under Fortran 90... 241
Obsolescent Features.........ccocevvvvveeeeeeeeennnnn. 242
Popular EXtENSIONSccvveeeieiiiiiiniiieieeeeeeenn, 242
New in Fortran 90ccooeeeeiiinnneens 245
Intrinsic Procedures...........cccoeeeeeeen.. 249
GlOSSArYccoovveeiiiee e 271
ASCIl Character Setcoeevvvvvnnnn... 281

Lahey Fortran 90 Language Reference

Introduction

Lahey Fortran 90 is a complete implementation of the ANSI and ISO Fortran 90 standards.
Numerous popular extensions are supported.

This manual is intended as a reference to the Fortran 90 language for programmers with expe-
rience in Fortran. For information on creating programs using the Lahey Fortran 90
Language System, see the Lahey Fortran 90 User's Guide.

Manual Organization

The manual is organized in six parts:

» Chapter 1Elements of Fortrantakes an elemental, building-block approach, start-
ing from Fortran’s smallest elements, its character set, and proceeding through
source form, data, expressions, input/output, statements, executable constructs, and
procedures, and ending with program units.

e Chapter 2AlIphabetical Referencgives detailed syntax and constraints for Fortran
statements, constructs, and intrinsic procedures.

* Appendix A,Fortran 77 Compatibilitydiscusses issues of concern to programmers
who are compiling their Fortran 77 code with Lahey Fortran 90.

« Appendix B,New in Fortran 90lists Fortran 90 features that were not part of stan-
dard Fortran 77.

» Appendix C,Intrinsic Proceduresis a table containing brief descriptions and spe-
cific names of procedures included with Lahey Fortran 90.

» Appendix D,Glossary defines various technical terms used in this manual.

* Appendix E,ASCII Chart details the 128 characters of the ASCII set.

Lahey Fortran 90 Language Reference Vv

Introduction

Notational Conventions

The following conventions are used throughout the manual:
blue text indicates an extension to the Fortran 90 standard.
code is indicated by courier font.

In syntax descriptiongbrackets]enclose optional items. An ellipsis, “...”, following an item
indicates that more items of the same form may apgédics indicate text to be replaced
by you. Non-italic letters in syntax descriptions are to be entered exactly as they appear.

vi Lahey Fortran 90 Language Reference

Elements of Fortran

Character Set

The Fortran character set consists of
o |etters:

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqgrstuvwxyz

« digits:
0123456789
» special characters:
<blank>=+-*/(),.":1"%&;<>?$
» and the underscore character
Special characters are used as operators, as separators or delimiters, or for grouping.
‘?” and ‘$’ have no special meaning.

Lower case letters are equivalent to corresponding upper-case letters except in CHARAC-
TER literals.

The underscore character can be used as a non-leading significant character in a name.

Names

Names are used in Fortran to refer to various entities such as variables and program units. A
name starts with a letter, can be up to 31 characters in length and consists entirely of letters,
digits, and underscores. In fixed source form, a name can contain blanks, which are
ignored.

Lahey Fortran 90 Language Reference 1

Chapter 1 Elements of Fortran

Examples of legal Fortran names are:

aAaAa apples_and_oranges r2d2
rose ROSE Rose

The three representations for the names on the line immediately above are equivalent.

The following names are illegal:

_start_with_underscore

2start_with_a_digit
name_to00000000000000000000000000000000_long
illegal_@_character

Statement Labels

Fortran statements can have labels consisting of one to five digits, at least one of which is
non-zero. Leading zeros are not significant in distinguishing statement labels. The following
labels are valid:

123
5000
10000
1
0001

The last two labels are equivalent. The same statement label must not be given to more than
one statement in a scoping unit.

Source Form

Fortran offers two source forms: fixed and free.

Fixed Source Form

Fixed source form is the traditional Fortran source form and is based on the columns of a
punched card. There are restrictions on where statements and labels can appear on a line.
Except in CHARACTER literals, blanks are ignored.

2 Lahey Fortran 90 Language Reference

Free Source Form

Except within a comment:
e Columns 1 through 5 are reserved for statement labels. Labels can contain blanks.

e Column 6 is used only to indicate a continuation line. If column 6 contains a blank
or zero, column 7 begins a new statement. If column 6 contains any other character,
columns 7 through 72 are a continuation of the previous non-comment line. There
can be up to 19 continuation lines. Continuation lines must not be labeled.

e Columns 7 through 72 are used for Fortran statements.
» Columns after 72 are ignored.

Fixed source form comments are formed by beginning a line withoa & *’ in column 1.
Additionally, trailing comments can be formed by placing’é@t any column except column

6. A1’ in a CHARACTER literal does not indicate a trailing comment. Comment lines
must not be continued, but a continuation line can contain a trailing comment. An END state-
ment must not be continued.

The ' character can be used to separate statements on a line. If it appears in a CHARAC-
TER literal or in a comment, the‘character is not interpreted as a statement separator.

Free Source Form

In free source form, there are no restrictions on where a statement can appear on a line. A
line can be up to 132 characters long. Blanks are used to separate names, constants, or label
from adjacent names, constants, or labels. Blanks are also used to separate Fortran keywords,
with the following exceptions, for which the blank separator is optional:

» BLOCK DATA
+ DOUBLE PRECISION

« ELSEIF

 END BLOCK DATA
« ENDDO

« ENDFILE

* END FUNCTION
 ENDIF

* END INTERFACE

» END MODULE

* END PROGRAM
 END SELECT

* END SUBROUTINE

« ENDTYPE

« END WHERE
« GOTO

« INOUT

» SELECT CASE

Lahey Fortran 90 Language Reference 3

Chapter 1 Elements of Fortran

Data

The ‘1’ character begins a comment except when it appears in a CHARACTER literal. The
comment extends to the end of the line.

The 4 ' character can be used to separate statements on a line. If it appears in a CHARAC-
TER literal or in a comment, the‘character is not interpreted as a statement separator.

The ‘& character as the last non-comment, non-blank character on a line indicates the line is
to be continued on the next non-comment line. If a name, constant, keyword, or label is split
across the end of a line, the first non-blank character on the next non-comment line must be
the ‘& character followed by successive characters of the name, constant, keyword, or label.
If a CHARACTER literal is to be continued, th& tharacter ending the line cannot be fol-
lowed by a trailing comment. A free source form statement can have up to 39 continuation
lines.

Comment lines cannot be continued, but a continuation line can contain a trailing comment.
A line cannot contain only a&" character or contain a&" character as the only character
before a comment.

Fortran offers the programmer a variety of ways to store and refer to data. You can refer to
data literally, as in the real numberg3 and6.23E5 , the integers3000 and65536 , or the
CHARACTER literal"Continue (y/n)?" . Or, you can store and reference variable data,
using names such aory, DISTANCE_FROM_ORIGINrUSER_NAMEConstants such as pi

or the speed of light can be given names and constant values. You can store data in a fixed-
size area in memory, or allocate memory as the program needs it. Finally, Fortran offers var-
ious means of creating, storing, and referring to structured data, through use of arrays,
pointers, and derived types.

Intrinsic Data Types

The five intrinsic data types are INTEGER, REAL, COMPLEX, LOGICAL, and CHARAC-
TER. The DOUBLE PRECISION data type available in Fortran 77 is still supported, but is
considered a subset, or kind, of the REAL data type.

Kind

In Fortran, an intrinsic data type has one or nkamds In Lahey Fortran, for the CHARAC-

TER, INTEGER, REAL, and LOGICAL data types, #iad type parametga number used

to refer to a kind) corresponds to the number of bytes used to represent each respective kind.
For the COMPLEX data type, the kind type parameter is the number of bytes used to repre-
sent the real or the imaginary part. Two intrinsic inquiry functions, SELECTED_INT_KIND

4 Lahey Fortran 90 Language Reference

Length

and SELECTED_REAL_KIND, are provided. Each returns a kind type parameter based on
the required range and precision of a data object in a way that is portable to other Fortran 90
systems. The kinds available in Lahey Fortran are summarized in the following table:

Table 1: Intrinsic Data Types

Kind Type
Type Parameter Notes
INTEGER 1 Range: -127 to 127
INTEGER 2 Range: -32,767 to 32,767
INTEGER 4* Range: -2,147,483,647 to 2,147,483,647
Range: 1.18* 1€ to 3.40 * 1
*
REAL 4 Precision: 7-8 decimal digits
Range: 2.23 * 188 to 1.79 * 16%
REAL 8 Precision: 15-16 decimal digits
Range: 1.18 * 1 to 3.40 * 1&°
*
COMPLEX 4 Precision: 7-8 decimal digits
Range: 2.23 * 188 to 1.79 * 16%
COMPLEX 8 Precision: 15-16 decimal digits
LOGICAL 1 Values: .TRUE. and .FALSE.
LOGICAL 4* Values: .TRUE. and .FALSE.
CHARACTER 1* ASCII character set
* default kinds
Length

The number of characters in a CHARACTER data object is indicated length type
parameter For example, the CHARACTER literadalf Marathon” has a length of
thirteen.

Literal Data

A literal datum, also known as a literal, literal constant, or immediate constant, is specified
as follows for each of the Fortran data types. The syntax of a literal constant determines its
intrinsic type.

Lahey Fortran 90 Language Reference 5

Chapter 1 Elements of Fortran

6

INTEGER literals

An INTEGER literal consists of one or more digits preceded by an optionaksign)and
followed by an optional underscore and kind type parameter. If the optional underscore and
kind type parameter are not present, the INTEGER literal is of default kind. Examples of
valid INTEGER literals are

34 -256 345 4 +78_mykind

34 and-256 are of type default INTEGER345_4 is an INTEGER of kind (default INTE-

GER in Lahey Fortran). In the last exampheykind must have been previously declared

as a scalar INTEGER named constant with the value of an INTEGER kind type parameter
(1, 2, or4 in Lahey Fortran).

A binary, octal, or hexadecimal constant can appear in a DATA statement. Such constants
are formed by enclosing a series of binary, octal, or hexadecimal digits in apostrophes or quo-
tation marks, and preceding the opening apostrophe or quotation markBy®ha Z for

binary, octal, and hexadecimal representations, respectively. Two valid examples are

B'10101' Z"1AC3"

REAL literals

A REAL literal consists of one or more digits containing a decimal point (the decimal point
can appear before, within, or after the digits), optionally preceded by arsign), and
optionally followed by an exponent letter and exponent, optionally followed by an under-
score and kind type parameter. If an exponent letter is present the decimal point is optional.
The exponent letter Bfor single precision andfor double precision. If the optional under-
score and kind type parameter are not present, the REAL literal is of default kind. Examples
of valid REAL literals are

-3.45 .0001 34.E-4 14 8

The first three examples are of type default REAL. The last example is a REAL @& kind

COMPLEX literals

A COMPLEX literal is formed by enclosing in parentheses a comma-separated pair of REAL
or INTEGER literals. The first of the REAL or INTEGER literals represents the real part of
the complex number; the second represents the imaginary part. The kind type parameter of
a COMPLEX constant is 8 if either the real or the imaginary part or both are double-precision
REAL, otherwise the kind type paramete#i@efault COMPLEX). Examples of valid
COMPLEX literals are

(3.4,-5.45) (-1,-3) (3.4,-5) (-3.d13,6._8)

The first three examples are of default kind, where four bytes are used to represent each part,
real orimaginary, of the complex number. The fourth example uses eight bytes for each part.

Lahey Fortran 90 Language Reference

Named Data

LOGICAL literals

A LOGICAL literal is either .TRUE. or .FALSE., optionally followed by an underscore and

a kind type parameter. If the optional underscore and kind type parameter are not present,
the LOGICAL literal is of default kind. Examples of valid LOGICAL literals are:

false. true. .true._mykind

In the last examplemykind must have been previously declared as a scalar INTEGER
named constant with the value of a LOGICAL kind type parameter4 in EIf90). The
first two examples are of type default LOGICAL.

CHARACTER literals

A CHARACTER literal consists of a string of characters enclosed in matching apostrophes
or quotation marks, optionally preceded by a kind type parameter and an underscore.

If a quotation mark is needed within a CHARACTER string enclosed in quotation marks,
double the quotation mark inside the string. The doubled quotation mark is then counted as
a single quotation mark. Similarly, if an apostrophe is needed within a CHARACTER string
enclosed in apostrophes, double the apostrophe inside the string. The double apostrophe is
then counted as a single apostrophe.

Examples of valid CHARACTER literals are

"Hello world"
‘don"t give up the ship!
ASCII_‘foobeedoodah'

ASCII must have been previously declared as a scalar INTEGER named constant with the
valuel to indicate the kind. The last two examples, which have no intervening characters
between the quotes or apostrophes, are zero-length CHARACTER literals.

Named Data

A named data object, such as a variable, named constant, or function result, is given the prop-
erties of an intrinsic or user-defined data type, either implicitly (based on the first letter of the
name) or through a type declaration statement. Additional information about a named data
object, known as the data object’s attributes, can also be specified, either in a type declaration
statement or in separate statements specific to the attributes that apply.

Once a data object has a name, it can be accessed in its entirety by referring to that name. For
some data objects, such as character strings, arrays, and derived types, portions of the data
object can also be accessed directly. In addition, aliases for a data object or a portion of a
data object, known as pointers, can be established and referred to.

Lahey Fortran 90 Language Reference 7

Chapter 1 Elements of Fortran

8

Implicit Typing

In the absence of a type declaration statement, a named data object’s type is determined by
the first letter of its name. The letters | through N begin INTEGER data objects and the other
letters begin REAL data objects. These implicit typing rules can be customized or disabled
using the IMPLICIT statement. IMPLICIT NONE can be used to disable all implicit typing

for a scoping unit.

Type Declaration Statements

A type declaration statement specifies the type, type parameters, and attributes of a named
data object or function. A type declaration statement is available for each intrinsic type,
INTEGER, REAL (and DOUBLE PRECISION), COMPLEX, LOGICAL, or CHARAC-

TER, as well as for derived types ($8erived Types”’on page 15).

Attributes

Besides type and type parameters, a data object or function can have one or more of the fol-
lowing attributes, which can be specified in a type declaration statement or in a separate
statement particular to the attribute:

» DIMENSION — the data object is an array (SBEVMENSION Statementdn page
106).

* PARAMETER — the data object is a named constant‘@a8AMETER State-
ment” on page 186).

* POINTER — the data object is to be used as an alias for another data object of the
same type, kind, and rank (SE®INTER Statementbn page 188).

« TARGET — the data object that is to be aliased by a POINTER data object (see
“TARGET Statementbn page 222).

* EXTERNAL — the name is that of an external procedure (B8 ERNAL State-
ment” on page 126).

 ALLOCATABLE — the data object is an array that is not of fixed size, but is to have
memory allocated for it as specified during execution of the programAke®-
CATABLE Statementin page 63).

e INTENT — the dummy argument value will not change in a procedure (INTENT
(IN)), will not be provided an initial value by the calling subprogram (INTENT
(OUT)), or both an initial value will be provided and a new value may result
(INTENT (IN OUT)) (se€INTENT Statement’on page 150).

* PUBLIC — the named data object or procedure in a MODULE program unit is
accessible in a program unit that uses that moduléR&Hl IC Statement’on page
195).

* PRIVATE — the named data object or procedure in a MODULE program unit is
accessible only in the current module ($8RIVATE Statementbn page 193).

Lahey Fortran 90 Language Reference

Substrings

e INTRINSIC — the name is that of an intrinsic function (488’ RINSIC Statement”
on page 153).

 OPTIONAL — the dummy argument need not have a corresponding actual argu-
ment in a reference to the procedure in which the dummy argument appears (see
“OPTIONAL Statementbn page 184).

e SAVE — the data object retains its value, association status, and allocation status
after a RETURN or END statement (S&AVE Statementon page 207).

e« SEQUENCE — the order of the component definitions in a derived-type definition
is the storage sequence for objects of that type' B #@UENCE Statementdn
page 211).

Substrings

A character string is a sequence of characters in a CHARACTER data object. The characters
in the string are numbered from left to right starting with one. A contiguous part of a char-
acter string, called a substring, can be accessed using the following syntax:

string ([lower-bound]: [upper-bound])

Where:
string is a string name or a CHARACTER literal.

lower-boundis the lower bound of a substringsifing.
upper-bounds the upper bound of a substringstfing.

If absentjower-boundandupper-boundare given the values one and the length of the string,
respectively. A substring has a length of zetovfer-boundis greater thanpper-bound
lower-boundmust not be less than one.

For example, ibc_string is the name of the stringbcdefg”

abc_string(2:4) is “bcd”

abc_string(2:) is “bcdefg”

abc_string(:5) is “abcde”

abc_string() is “abcdefg”

abc_string(3:3) is“c”

“abcdef’(2:4) is “bcd”

“abcdef’(3:2) is a zero-length string
Arrays

An array is a set of data, all of the same type and type parameters, arranged in a rectangular
pattern of one or more dimensions. A data object that is not an arrsgaiaa Arrays can
be specified by using the DIMENSION statement or by using the DIMENSION attribute in

Lahey Fortran 90 Language Reference 9

Chapter 1 Elements of Fortran

10

a type declaration statement. An array hesnft that is equal to the number of dimensions
in the array; a scalar has rank zero. The arighepeis its extent in each dimension. The
array’ssizeis the number of elements in the array. In the following example

integer, dimension (3,2) :: i

i has rank 2, shape (3,2), and size 6.

Array References
A whole array is referenced by the name of the array. Individual elements or sections of an
array are referenced using array subscripts.

Syntax:
array [(subscript-lisj]

Where:

array is the name of the array.

subscript-listis a comma-separated list of

element-subscript

or subscript-triplet

or vector-subscript

element-subscrigs a scalar INTEGER expression.
subscript-tripletis [element-subscript] [element-subscript] | stride]
strideis a scalar INTEGER expression.

vector-subscripis a rank one INTEGER array expression.

The subscripts isubscript-lisieach refer to a dimension of the array. The left-most subscript
refers to the first dimension of the array.

Array Elements

If each subscript in an array subscript list is an element subscript, then the array reference is
to a singlearray element Otherwise, it is to aarray section(se€'Array Sections”on page

11).

Array Element Order
The elements of an array form a sequence known as array element order. The position of an
element of an array in the sequence is:

(1+(s1—j)) + ((sp—j2) xdy) + ... +((Sq—n) X dq_g X dy_5... X dp)

Where:
s is the subscript in thigh dimension.

ji is the lower bound of thigh dimension.
d, is the size of thigh dimension.

n is the rank of the array.

Lahey Fortran 90 Language Reference

Arrays

Another way of describing array element order is that the subscript of the leftmost dimension
changes most rapidly as one goes from first element to last in array element order. For exam-
ple, in the following code

integer, dimension(2,3) :: a

the order of the elementsadél,1) ,a(2,1) ,a(1,2) ,a2,2) ,a(3) ,al2,3) . When
performing input/output on arrays, array element order is used.

Array Sections

You can refer to a selected portion of an array as an array. Such a portion is called an array
section. An array section has a subscript list that contains at least one subscript that is either
a subscript triplet or a vector subscript (see the examples tBulescript Triplets” and

“Vector Subscripts"below). Note that an array section with only one element is not a scalar.

Subscript Triplets

The three components of a subscript triplet are the lower bound of the array section, the upper
bound, and the stride (the increment between successive subscripts in the sequence), respec
tively. Any or all three can be omitted. If the lower bound is omitted, the declared lower
bound of the dimension is assumed. If the upper bound is omitted, the upper bound of the
dimension is assumed. If the stride is omitted, a stride of one is assumed. Valid examples of
array sections using subscript triplets are:

a(2:8:2) 1a(2), a(4), a(6), a(8)
b(1,3:1:-1) !'b(1,3), b(1,2), b(1,1)
c(i,iy) Ic

Vector Subscripts
A vector (one-dimensional array) subscript can be used to refer to a section of a whole array.
Consider the following example:

integer :: vector(3) = (/3,8,12/)
real :: whole(3,15)
print*, whole(3,vector)

Here the arrayector is used as a subscriptwifiole in the PRINT statement, which prints
the values of elements (3,3), (3,8), and (3,12).

Arrays and Substrings

A CHARACTER array section or array element can have a substring specifier following the
subscript list. If a whole array or an array section has a substring specifier, then the reference
is an array section. For example,

character (len=10), dimension (10,10) :: my_string
my_string(3:8,:) (2:4) = 'abc'

Lahey Fortran 90 Language Reference 11

Chapter 1 Elements of Fortran

12

assignsabc' to the array section made up of characters 2 through 4 of rows 3 through 8 of
the CHARACTER arrayny_string

Dynamic Arrays

An array can be fixed in size at compile time or can assume a size or shape at run time in a
number of ways:

» allocatable arraysandarray pointerscan be allocated as needed with an ALLO-
CATE statement, and deallocated with a DEALLOCATE statementaréay
pointerassumes the shape of its target when used in a pointer assignment statement
(see"Allocatable Arrays” on page 12 antArray Pointers” on page 12). Allocat-
able arrays and array pointers together are knowdefasred-shape arrays

e A dummy array can assume a size and shape based on the size and shape of the cor-
responding actual argument (Séassumed-Shape Arraysin page 13).

* A dummy array can be of undeclared siZes6umed-Size Arraysdn page 13).

» An array can have variable dimensions based on the values of dummy arguments
(“Adjustable and Automatic Arraysdn page 14).

Allocatable Arrays

The ALLOCATABLE attribute can be given to an array in a type declaration statement or in
an ALLOCATABLE statement. An allocatable array must be declared with the deferred-
shape specifier, *’, for each dimension. For example,

integer, allocatable :: a(;), b(:,:,:)
declares two allocatable arrays, one of rank one and the other of rank three.

The bounds, and thus the shape, of an allocatable array are determined when the array is allo-
cated with an ALLOCATE statement. Continuing the previous example,

allocate (a(3), b(1,3,-3:3))

allocates an array of rank one and size three and an array of rank three and size 21 with the
lower bound -3 in the third dimension.

Memory for allocatable arrays is returned to the system using the DEALLOCATE statement.

Array Pointers

The POINTER attribute can be given to an array in a type declaration statement or in a
POINTER statement. An array pointer, like an allocatable array, is declared with the
deferred-shape specifiet’, for each dimension. For example

integer, pointer, dimension(:,:) :: ¢

Lahey Fortran 90 Language Reference

Dynamic Arrays

declares a pointer array of rank two. An array pointer can be allocated in the same way an
allocatable array can. Additionally, the shape of a pointer array can be set when the pointer
becomes associated with a target in a pointer assignment statement. The shape then become
that of the target.

integer, target, dimension(2,4) :: d
integer, pointer, dimension(:,:) :: ¢

c=>d

In the above example, the arrapecomes associated with arcagnd assumes the shape of
d.

Assumed-Shape Arrays

An assumed-shape array a dummy array that assumes the shape of the corresponding
actual argument. The lower bound of an assumed-shape array can be declared and can be
different from that of the actual argument array. An assumed-shape specification is

[lower-bound]:

for each dimension of the assumed-shape array. For example
integer :: a(3,4)

call zee(a)

subroutine zee(x)
implicit none
integer, dimension(-1:,:) :: X

Here the dummy arrayassumes the shape of the actual argumerith a new lower bound
for dimension one.

The interface for an assumed-shape array must be explictEgelecit Interfaces” on page
49).

Assumed-Size Arrays

An assumed-size arrag a dummy array that's size is not known. All bounds except the
upper bound of the last dimension are specified in the declaration of the dummy array. In
the declaration, the upper bound of the last dimension is an asterisk. The two arrays have the
same initial array element, and are storage associated.

You must not refer to an assumed-size array in a context where the shape of the array must
be known, such as in a whole array reference or for many of the transformational array intrin-
sic functions. A function result can not be an assumed-size array.

Lahey Fortran 90 Language Reference 13

Chapter 1 Elements of Fortran

14

integer a
dimension a(4)

call zee(a)

subroutine zee(x)
integer, dimension(-1:*) :: X

In this example, the size of dummy arsais not known.

Adjustable and Automatic Arrays

You can establish the shape of an array based on the values of dummy arguments. If such an
array is a dummy array, it is called agjustable array If the array is not a dummy array it
is called arautomatic array Consider the following example:

integer function bar(i, k)
integer :: i,j,k
dimension i(k,3), j(k)

Here the shapes of arraysandj depend on the value of the dummy argunkenit is an
adjustable array arjdis an automatic array.

Array Constructors
An array constructor is an unnamed array.

Syntax:
(/ constructor-values)

Where:

constructor-valuess a comma-separated list of
expr

or ac-implied-do

expris an expression.

ac-implied-dais (constructor-valuesac-implied-do-contro)
ac-implied-do-controls do-variable= do-expr do-expr | do-expr]
do-variableis a scalar INTEGER variable.

do-expris a scalar INTEGER expression.

Lahey Fortran 90 Language Reference

Derived Types

An array constructor is a rank-one array. If a constructor element is itself array-valued, the
values of the elements, in array-element order, specify the corresponding sequence of ele-
ments of the array constructor. If a constructor value is an implied-do, it is expanded to form
a sequence of values under the control ofitvwariableas in the DO construct (s20
Construct”on page 108).

integer, dimension(3) :: a, b=(/1,2,3/), c=(/(i, i=4,6)/)
a=b+c+(/7,8,9/)!ais assigned (/12,15,18/)

An array constructor can be reshaped with the RESHAPE intrinsic function and can then be
used to initialize or represent arrays of rank greater than one. For example

real,dimension(2,2) :: a = reshape((/1,2,3,4/),(/12,2/))

assigng/1,2,3,4/) toa in array-element order after reshaping it to conform with the
shape oh.

Derived Types

Derived types are user-defined data types based on the intrinsic types, INTEGER, REAL,
COMPLEX, LOGICAL, and CHARACTER. Where an array is a set of data all of the same
type, a derived type can be composed of a combination of intrinsic types or other derived
types. A data object of derived type is called a structure.

Derived-Type Definition

A derived type must be defined before objects of the derived type can be declared. A derived
type definition specifies the name of the new derived type and the names and types of its
components.

Syntax:
derived-type-statement
[private-sequence-statement]
type-definition-statement
[type-definition-statement]

END TYPE[type-name]

Where:
derived-type-statemei¥ a derived type statement.

private-sequence-statemésta PRIVATE statement.
or a SEQUENCE statement.

type-definition-statemeis an INTEGER, REAL, COMPLEX, DOUBLE PRECISION,
LOGICAL, CHARACTER or TYPE statement.

Lahey Fortran 90 Language Reference 15

Chapter 1 Elements of Fortran

16

A type definition statement in a derived type definition can have only the POINTER and
DIMENSION attributes. It cannot be initialized in the derived type definition and cannot be
a function. A component array must be a deferred-shape array if the POINTER attribute is
present, otherwise it must have an explicit shape.

type coordinates
real :: latitude, longitude
end type coordinates

type place
character(len=20) :: name
type(coordinates) :: location
end type place

type link

integer ::

type (link), pointer :: next
end type link

In the example, typeoordinates is a derived type with two REAL componentsti-

tude andlongitude . Typeplace hastwo components: a CHARACTER of length twenty,
name, and a structure of tymeordinates namedocation . Typelink has two compo-

nents: an INTEGER,, and a structure of typimk , namechext , that is a pointer to the

same derived type. A component structure can be of the same type as the derived type itself
only if it has the POINTER attribute. In this way, linked lists, trees, and graphs can be
formed.

There are two ways to use a derived type in more than one program unit. The preferred way
is to define the derived type in a module (8dedule Program Units”on page 54) and use

the module wherever the derived type is needed. Another method, avoiding modules, is to
use a SEQUENCE statement in the derived type definition, and to define the derived type in
exactly the same way in each program unit the type is used. This could be done using an
include file. Components of a derived type can be made inaccessible to other program units
by using a PRIVATE statement before any component definition statements.

Declaring Variables of Derived Type

Variables of derived type are declared with the TYPE statement. The following are examples
of declarations of variables for each of the derived types defined above:

type(coordinates) :: my_coordinates
type(place) :: my_town

type(place), dimension(10) :: cities
type(link) :: head

Lahey Fortran 90 Language Reference

Structure Constructors

Component References

Components of a structure are referenced using the percenisigretator. For example,
latitude in the structureny_coordinates , above, is referenced as
my_coordinates%latitude . latitude in typecoordinates in structuremy_town is
referenced asiy_town%coordinates%latitude . If the variable is an array of structures,
as incities , above, array sections can be referenced, such as

cities(:,:)%name
which references the componeiaine for all elements ofities , and
cities(1,1:2)%coordinates%latitude

which references elemelatitude of typecoordinates ~ for elementg1,1) and(1,2)
only of cities . Note that in the first example, the syntax

cities%name

is equivalent and is an array section.

Structure Constructors
A structure constructor is an unnamed structure.
Syntax:

type-name expr-list)

Where:
type-names the name of the derived type.

expr-listis a list of expressions.

Each expression iexpr-listmust agree in number and order with the corresponding compo-
nents of the derived type. Where necessary, intrinsic type conversions are performed. For
non-pointer components, the shape of the expression must agree with that of the component.

type mytype I derived-type definition
integer :: i,
character(len=40) :: string

end type mytype

type (mytype) :: a ! derived-type declaration
a = mytype (4, 5.0*2.3, 'abcdefg’)

In this example, the second expression in the structure constructor is converted to type default
INTEGER when the assignment is made.

Lahey Fortran 90 Language Reference 17

Chapter 1 Elements of Fortran

Pointers

In Fortran, gointeris an alias. The variable it aliases igdtiget Pointer variables must

have the POINTER attribute; target variables must have either the TARGET attribute or the
POINTER attribute.

Associating a Pointer with a Target

A pointer can only be associated with a variable that has the TARGET attribute or the
POINTER attribute. Such an association can be made in one of two ways:

» explicitly with a pointer assignment statement.
e implicitly with an ALLOCATE statement.

Once an association between pointer and target has been made, any reference to the pointer
applies to the target.

Declaring Pointers and Targets

A variable can be declared to have the POINTER or TARGET attribute in a type declaration
statement or in a POINTER or TARGET statement. When declaring an array to be a pointer,
you must declare the array with a deferred shape.

Example:

integer, pointer :: a, b(:,:)

integer, target :: ¢

a=>c I pointer assignment statement
l'ais an alias for ¢

allocate (b(3,2)) ! allocate statement
I 'an unnamed target for b is
I created with the shape (3,2)

In this example, an explicit association is created betwealc through the pointer assign-
ment statement. Note thahas been previously declared a pointelnas been previously
declared a target, ardandc agree in type, kind, and rank. In the ALLOCATE statement,
a target array is allocated amis made to point to it. The arraywas declared with a
deferred shape, so that the target array could be allocated with any rank two shape.

Expressions

An expression is formed from operands, operators, and parentheses. Evaluation of an expres-
sion produces a value with a type, type parameters (kind and, if CHARACTER, length), and
a shape. Some examples of valid Fortran expressions are:

18 Lahey Fortran 90 Language Reference

Expressions

5

n

(n+1)*y

"to be" // " or not to be’ // text(1:23)

(-b + (b**2-4*a*c)**.5) / (2*a)

b%a - a(1:1000:10)

sin(a) .le. .5

| .my_binary_operator. r +.my_unary_operator. m

The last example uses defined operations‘{Beéned Operations”on page 51).

All array-valued operands in an expression must have the same shape. A soalaris-
ablewith an array of any shape. Array-valued expressions are evaluated element-by-element
for corresponding elements in each array and a scalar in the same expression is treated like
an array where all elements have the value of the scalar. For example, the expression

a(2:4) +b(1:3)+5
would perform

a(2)+b(1)+5

a(3)+b(2)+5

a(4)+b(3)+5
Expressions are evaluated according to the rules of operator precedence, described below. If
there are multiple contiguous operations of the same precedence, subtraction and division are
evaluated from left to right, exponentiation is evaluated from right to left, and other opera-
tions can be evaluated either way, depending on how the compiler optimizes the expression.
Parentheses can be used to enforce a particular order of evaluation.

A specification expressidn a scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution. iAftialization expressiolis an expression that
can be evaluated at compile time.

Lahey Fortran 90 Language Reference 19

Chapter 1 Elements of Fortran

Intrinsic Operations
The intrinsic operators, in descending order of precedence are:

Table 2: Intrinsic Operators

Operator Represents Operands
*x exponentiation two numeric
*and / multiplication and division two numeric
+and - unary addition and subtraction one numeric
+ and - binary addition and subtraction two numeric
1 concatenation two CHARACTER
.EQ. and == equal to two numeric or two
.NE. and /= not equal to CHARACTER
.LT. and < less than
.LE. and <= less than or equal to two non-COMPLEX
.GT. and > greater than numeric or two CHAR-
.GE. and >= greater than or equal to ACTER
.NOT. logical negation one LOGICAL
AND. logical conjunction two LOGICAL
.OR. logical inclusive disjunction two LOGICAL
.EQV. and logical equalence and non- tWo LOGICAL
.NEQV. equivalence

Note: all operators within a given cell in the table are of equal precedence

If an operation is performed on operands of the same type, the result is of that type and has
the greater of the two kind type parameters.

If an operation is performed on numeric operands of different types, the result is of the higher
type, where COMPLEX is higher than REAL and REAL is higher than INTEGER.

If an operation is performed on numeric or LOGICAL operands of the same type but different
kind, the result has the kind of the operand offering the greater precision.

The result of a concatenation operation has a length that is the sum of the lengths of the
operands.

20 Lahey Fortran 90 Language Reference

Input/Output

INTEGER Division

The result of a division operation between two INTEGER operands is the integer closest to
the mathematical quotient and between zero and the mathematical quotient, inclusive. For
example7/5 evaluates ta and-7/5 evaluates tel .

Input/Output

Fortran input and output are performed on logigats. A unit is

e anon-negative INTEGER associated with a physical device such as a disk file, the
console, or a printer. The unit must be connected to a file or device in an OPEN state-
ment, except in the case of pre-connected files.

e anasterisk, ', indicating the standard input and standard output devices, usually the
keyboard and monitor, that are preconnected.

* a CHARACTER variable corresponding to the name of an internal file.

Fortran statements are available to connect (OPEN) or disconnect (CLOSE) files and devices
from input/output units; transfer data (PRINT, READ, WRITE); establish the position within

a file (REWIND, BACKSPACE, ENDFILE); and inquire about a file or device or its con-
nection (INQUIRE).

Pre-Connected Input/Output Units

Input/output units 5, 6 and * are automatically connected when used. Unit 5 is connected to
the standard input device, usually the keyboard, and unit 6 is connected to the standard output
device, usually the monitor. Units 5 and 6 can be connected to other physical devices or files.
Unit * is always connected to the standard input and standard output devices.

Files

Fortran treats all physical devices, such as disk files, the console, printers, and internal files,
as files. A file is a sequence of zero or more records. The data format (either formatted or
unformatted), file access type (either direct or sequential) and record length determine the
structure of the file.

File Position

Certain input/output statements affect the position within an external file. Prior to execution
of a data transfer statement, a direct file is positioned at the beginning of the record indicated
by the record specifier REC= in the data transfer statement. By default, a sequential file is
positioned after the last record read or written. However, if non-advancing input/output is
specified using the ADVANCE= specifier, it is possible to read or write partial records and
to read variable-length records and be notified of their length.

Lahey Fortran 90 Language Reference 21

Chapter 1 Elements of Fortran

An ENDFILE statement writes an endfile record after the last record read or written and posi-
tions the file after the endfile record. A REWIND statement positions the file at its initial
point. A BACKSPACE statement moves the file position back one record.

If an error condition occurs, the position of the file is indeterminate.

If there is no error, and an endfile record is read or written, the file is positioned after the end-
file record. The file must be repositioned with a REWIND or BACKSPACE statement
before it is read from or written to again.

For non-advancing (partial record) input/output, if there is no error and no end-of-file condi-
tion, but an end-of-record condition occurs, the file is positioned after the record just read. If
there is no end-of-record condition the file position is unchanged.

File Types

The type of file to be accessed is specified in the OPEN statement using the FORM= and
ACCESS= specifiers (s¢®PEN Statementon page 181).

Formatted Sequential

« variable-length records terminated by end of line
» stored as CHARACTER data

» can be used with devices or disk files

» records must be processed in order

» files can be printed or displayed easily

e usually slowest

Formatted Direct

« fixed-length records - record zero is a header
» stored as CHARACTER data

» disk files only

» records can be accessed in any order

* not easily processed outside of Lahey Fortran
» same speed as formatted sequential disk files

Unformatted Sequential

» variable length records separated by record marker
« stored as binary data

» disk files only

» records must be processed in order

+ faster than formatted files

* not easily read outside of Lahey Fortran

22 Lahey Fortran 90 Language Reference

Files

Unformatted Direct

» fixed-length records - record zero is a header
» stored as binary data

« disk files only

» records can be accessed in any order

+ fastest

* not easily read outside of Lahey Fortran

Transparent

» stored as binary data without record markers or header

» record length one byte but end-of-record restrictions do not apply
» records can be processed in any order

e can be used with disk files or other physical devices

» good for files that are accessed outside of Lahey Fortran

» fast and compact

See“File Formats” in the User's Guide for more information.

Internal Files

An internal file is always a formatted sequential file and consists of a single CHARACTER
variable. If the CHARACTER variable is array-valued, each element of the array is treated
as a record in the file. This feature allows conversion from internal representation (binary,
unformatted) to external representation (ASCII, formatted) without transferring data to an
external device.

Carriage Control

The first character of a formatted record sent to a terminal device, such as the console or a
printer, is used for carriage control and is not printed. The remaining characters are printed
on one line beginning at the left margin. The carriage control character is interpreted as
follows:

Table 3: Carriage Control

Character Vertical Spacing Before Printing
0 Two Lines
1 To First Line of Next Page
+ None
Blank or Any
Other Charac- One Line
ter

Lahey Fortran 90 Language Reference 23

Chapter 1 Elements of Fortran

Input/Output Editing

24

Fortran provides extensive capabilities for formatting, or editing, of data. The editing can be
explicit, using dormat specificationor implicit, using list-directed input/output, in which

data are edited using a predetermined format‘(dseDirected Formatting” on page 30).

A format specifications a default CHARACTER expression and can appear

» directly as the FMT= specifier value.
e in a FORMAT statement whose label is the FMT= specifier value.

* in a FORMAT statement whose label was assigned to a scalar default INTEGER
variable that appears as the FMT= specifier value.

The syntax for a format specification is
([format-items])

whereformat-itemsncludes editing information in the form edlit descriptors See'FOR-
MAT Statementdn page 128 for detailed syntax.

Format Control

A correspondence is established between a format specification and items in a READ,
WRITE or PRINT statement’s input/output list in which the edit descriptors and input/output
list are both interpreted from left to right. Each effective edit descriptor is applied to the cor-
responding data entity in the input/output list. Each instance of a repeated edit descriptor is
an edit descriptor in effect. Three exceptions to this rule are

1. COMPLEX items in the input/output list require the interpretation of two F, E, EN,
ES, D or G edit descriptors.

2. Control and character string edit descriptors do not correspond to items in the input/
output list.

3. Ifthe end of a complete format is encountered and there are remaining items in the
input/output list, format control reverts to the beginning of the format item termi-
nated by the last preceding right parenthesis, if it exists, and to the beginning of the
format otherwise. If format control reverts to a parenthesis preceded by a repeat
specification, the repeat specification is reused.

Data Edit Descriptors

Data edit descriptors control conversion of data to or from its internal representation.

Lahey Fortran 90 Language Reference

Data Edit Descriptors

Numeric Editing
Thel,B, 0, Z,F, E, EN, ES, D, and G edit descriptors can be used to specify the input/output
of INTEGER, REAL, and COMPLEX data. The following general rules apply:

e Oninput, leading blanks are not significant.
« On output, the representation is right-justified in the field.

e On output, if the number of characters produced exceeds the field width the entire
field is filledwith asterisks.

INTEGER Editing (I, B, O, and Z)

The W, lw.m Bw, Bw.m Ow, Ow.m Zw, and Zv.medit descriptors indicate the manner of
editing for INTEGER data. The indicates the width of the field on input, including a sign

(if present). Thenindicates the minimum number of digits on outputnust not exceed.

The output width is padded with blanks if the number is smaller than the field. Note that an
input width must always be specified.

REAL Editing (F, D, and E)
The Fw.d, Ew.d, Dw.d, Ew.dEe, EN, and ES edit descriptors indicate the manner of editing
of REAL and COMPLEX data.

F, D, E, EN, and ES editing are identical on input. Whedicates the width of the field;

thed indicates the number of digits in the fractional part. The field consists of an optional
sign, followed by one or more digits that can contain a decimal point. If the decimal point is
omitted, the rightmodd digits are interpreted as the fractional part. An exponent can be
included in one of the following forms:

« An explicitly signed INTEGER constant.
e E or D followed by an optionally signed INTEGER constant.

For F editing, the output field consists of zero or more blanks followed by a minus sign or an
optional plus sign (see S, SP, and SS Editing), followed by one or more digits that contain a
decimal point and represent the magnitude. The field is modified by the established scale fac-
tor (see P Editing) and is roundeddtdecimal digits.

Lahey Fortran 90 Language Reference 25

Chapter 1 Elements of Fortran

26

For E and D editing, the output field consists of the following, in order:
zero or more blanks

a minus or an optional plus sign (see S, SP, and SS Editing)

a zero (depending on scale factor, see P Editing)

a decimal point

thed most significant digits, rounded

anEoraD

a plus or a minus sign

© N o g M w0 bd P

an exponent df digits, if the extended dee form is used, and two digits
otherwise.

For E and D editing, the scale fackotontrols the position of the decimal point. If

—-d <k<0, the output field contains exactly leading zeros@ndk| significant digits
after the decimal point. B<k<d+2 ,the output field contains exdcsignificant digits

to the left of the decimal pointadd-k+ 1 significant digits to the right of the decimal point.
Other values ok are not permitted.

EN Editing

The EN edit descriptor produces an output field in engineering notation such that the decimal
exponent is divisible by three and the absolute value of the significand is greater than or equal
to 1 and less than 1000, except when the output value is zero. The scale factor has no effect
on output.

The forms of the edit descriptor are &N and ENv.dEe indicating that the external field
occupiesw positions, the fractional part of which consistsl digits and the exponent part
digits.

On input, EN editing is the same as F editing.

ES Editing

The ES edit descriptor produces an output field in the form of a real number in scientific nota-
tion such that the absolute value of the significand is greater than or equal to 1 and less than
10, except when the output value is zero. The scale factor has no effect on output.

The forms of the edit descriptor arevie8 and ESv.dEe indicating that the external field
occupiesw positions, the fractional part of which consistsl digits and the exponent part
digits.

On input, ES editing is the same as F editing.

Lahey Fortran 90 Language Reference

Data Edit Descriptors

COMPLEX Editing

COMPLEX editing is accomplished by using two REAL edit descriptors. The first of the edit
descriptors specifies the real part; the second specifies the imaginary part. The two edit
descriptors can be different. Control edit descriptors can be processed between the edit
descriptor for the real part and the edit descriptor for the imaginary part. Character string edit
descriptors can be processed between the two edit descriptors on output only.

LOGICAL Editing (L)

The Lw edit descriptor indicates that the field occupigzositions. The specified input/out-
put list item must be of type LOGICAL.

The input field consists of optional blanks, optionally followed by a decimal point, followed

by a T for true or F for false. The T or F can be followed by additional characters in the field.
Note that the logical constants .TRUE. and .FALSE. are acceptable input forms. If a pro-
cessor is capable of representing letters in both upper and lower case, a lower-case letter is
equivalent to the corresponding upper-case letter in a LOGICAL input field.

The output field consists of - 1 blanks followed by a T or F, depending on whether the value
of the internal data object is true or false, respectively.

CHARACTER Editing (A)
The Alw] edit descriptor is used with an input/output list item of type CHARACTER.

If a field widthw is specified with the A edit descriptor, the field consists oharacters. If
a field widthw is not specified with the A edit descriptor, the number of characters in the field
is the length of the corresponding list item.

Letlenbe the length of the list item. On inputyifs greater than or equal len, the right-
mostlen characters will be taken from the fieldwifis less thaten, thew characters are left-
justified and padded witlen-wtrailing blanks.

On output, the list item is padded with leading blanksigf greater thaten. If wis less than
or equal tden, the output field consists of the leftmestharacters of the list item.

Generalized Editing (G)

The Gv.dand Gw.dEe edit descriptors can be used with an input/output list item of any
intrinsic type.

These edit descriptors indicate that the external field occwgpesitions, the fractional part
of which consists of a maximum dfdigits and the exponent partligits. d ande have no
effect when used with INTEGER, LOGICAL, or CHARACTER data.

Generalized Integer Editing

With INTEGER data, the ®.d and Gv.dEe edit descriptors follow the rules for the édit
descriptor.

Lahey Fortran 90 Language Reference 27

Chapter 1 Elements of Fortran

28

Generalized Real and Complex Editing

The form and interpretation of the input field is the same as for F editing.

The method of representation in the output field depends on the magnitude of the data object
being edited. If the decimal point falls just before, within, or just afted siignificant digits

to be printed, then the output is as for the F edit descriptor; otherwise, editing is as for the E
edit descriptor.

Note that the scale factkisee'P Editing” on page 29) has no effect unless the magnitude
of the data object to be edited is outside the range that permits effective use of F editing.

Generalized Logical Editing

With LOGICAL data, the @&.dand Gv.dEe edit descriptors follow thew edit descriptor
rules.

Generalized Character Editing

With CHARACTER data, the ®.dand Gv.dEe edit descriptors follow the wedit descrip-
tor rules.

Control Edit Descriptors

Control edit descriptors affect format control or the conversions performed by subsequent
data edit descriptors.

Position Editing (T, TL, TR, and X)

The Th, TLn, TRn, andnX edit descriptors control the character position in the current record
to or from which the next character will be transferred. The new position can be in either
direction from the current position. This makes possible the input of the same record twice,
possibly with different editing. It also makes skipping characters in a record possible.

The Th edit descriptor tabs to character positidrom the beginning of the record. TherTL
and TR edit descriptors tatcharacters left or right, respectively, from the current position.
ThenX edit descriptor tabs characters right from the current position.

If the position is changed to beyond the length of the current record, the next data transfer to
or from the record causes the insertion of blanks in the character positions not previously
filled.

Slash Editing

The slash edit descriptor terminates data transfer to or from the current record. The file posi-
tion advances to the beginning of the next record. On output to a file connected for sequential
access, a new record is written and the new record becomes the last record in the file.

Lahey Fortran 90 Language Reference

Character String Edit Descriptors

Colon Editing

The colon edit descriptor terminates format control if there are no more items in the input/
output list. The colon edit descriptor has no effect if there are more items in the input/output
list.

S, SP, and SS Editing

The S, SP, and SS edit descriptors control whether an optional plus is to be transmitted in
subsequent numeric output fields. SP causes the optional plus to be transmitted. SS causes
it not to be transmitted. S returns optional pluses to the processor default (no pluses).

P Editing
ThekP edit descriptor sets the value of the scale factaor Tihe scale factor affects the F, E,
EN, ES, D, or G editing of subsequent numeric quantities as follows:

« Oninput (provided that no exponent exists in the field) the scale factor causes the
externally represented number to be equal to the internally represented number mul-
tiplied by 1¢. The scale factor has no effect if there is an exponent in the field.

« On output, with E and D editing, the significand part of the quantity to be produced
is multiplied by 18 and the exponent is reducedky

« On output, with G editing, the effect of the scale factor is suspended unless the mag-
nitude of the data object to be edited is outside the range that permits the use of F
editing. If the use of E editing is required, the scale factor has the same effect as with
E output editing.

e On output, with EN and ES editing, the scale factor has no effect.

e On output, with F editing, the scale factor effect is that the externally represented
number equals the internally represented number tintes 10

BN and BZ Editing

The BN and BZ edit descriptors are used to specify the interpretation, by numeric edit
descriptors, of non-leading blanks in subsequent numeric input fields. If a BN edit descriptor
is encountered in a format, blanks in subsequent numeric input fields are ignored. If a BZ
edit descriptor is encountered, blanks in subsequent numeric input fields are treated as zeros.

Character String Edit Descriptors

The character string edit descriptors cause literal CHARACTER data to be output. They
must not be used for input.

CHARACTER String Editing
The CHARACTER string edit descriptor causes characters to be output from a string, includ-
ing blanks. Enclosing characters are either apostrophes or quotation marks.

Lahey Fortran 90 Language Reference 29

Chapter 1 Elements of Fortran

30

For a CHARACTER string edit descriptor, the width of the field is the number of characters
contained in, but not including, the delimiting characters. Within the field, two consecutive
delimiting characters (apostrophes, if apostrophes are the delimiters; quotation marks, if quo-
tation marks are the delimiters) are counted as a single character. Thus an apostrophe or
guotation mark character can be output as part of a CHARACTER string edit descriptor
delimited by the same character.

H Editing (obsolescent)

ThecH edit descriptor causes character information to be written from the nkatacters
(including blanks) following the H of theH edit descriptor in the list of format items itself.
Thec characters are calledllerith constant

List-Directed Formatting

List-directed formatting is indicated when an input/output statement uses an asterisk instead
of an explicit format. For example,

read*, a
print*, x,y,z
read (unit=1, fmt=*) i,j,k

all use list-directed formatting.

List-Directed Input

List-directed records consist of a sequence of values and value separators. Values are either
null or any of the following forms:

c
rc
r*

Where:
c is a literal constant or a non-delimited CHARACTER string.

r is a positive INTEGER literal constant with no kind type parameter specified.
r*c is equivalent to successive instancesof
r* is equivalent to successive instances of null.

Separators are either commas or slashes with optional preceding or following blanks; or one
or more blanks between two non-blank values. A slash separator causes termination of the
input statement after transfer of the previous value.

Lahey Fortran 90 Language Reference

List-Directed Formatting

Editing occurs based on the type of the list item as explained below. On input the following
formatting applies:

Table 4: List-Directed Input Editing

Type Editing
INTEGER I
REAL F
COMPLEX As for COMPLEX literal constant
LOGICAL L

As for CHARACTER string. CHARACTER
string can be continued from one record to the
next. Delimiting apostrophes or quotation markis
CHARACTER are not required if the CHARACTER string does
not cross a record boundary and does not contain
value separators or CHARACTER string delimitf
ers, or begin with*,

List-Directed Output
For list-directed output the following formatting applies:

Table 5: List-Directed Output Editing

Type Editing
INTEGER Qv
REAL Gw.d
COMPLEX (Gw.d, Gw.d)
LOGICAL T for value true and F for value false

Lahey Fortran 90 Language Reference 31

Chapter 1 Elements of Fortran

Namelist Formatting
Namelist formatting is indicated by an input/output statement with an NML= specifier.
Namelist input and output consists of

1. optional blanks

2. the ampersand character followed immediately by the namelist group name specified
in the namelist input/output statement

3. one or more blanks
4. a sequence of zero or merame-value subsequencasad
5. aslash indicating the end of the namelist record.

The characters in namelist records form a sequencanoé-value subsequences name-

value subsequence is a data object or subobject previously declared in a NAMELIST state-
ment to be part of the namelist group, followed by an equals, followed by one or more values
and value separators.

Formatting for namelist records is the same as for list-directed records.

Example:
integer :: 1,j(10)
real :: n(5)
namelist /my_namelist/ i,j,n
read(*,nml=my_namelist)

If the input records are

&my_namelist i=5, n(3)=4.5,
j(1:4)=4*0/

thens is stored in , 4.5 inn(3) , ando in elements 1 through 4 pf

Statements

32

A brief description of each statement follows. For complete syntax and rules, see Chapter 2,
“Alphabetical Reference.”

Fortran statements can be grouped into five categories. They are
» Control Statements

» Specification Statements

e Input/Output Statements

» Assignment and Storage Statements

* Program Structure Statements

Lahey Fortran 90 Language Reference

Control Statements

Control Statements

Arithmetic IF (obsolescent)

Execution of an arithmetic IF statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
in the arithmetic IF statement is executed next if the value of the expression is less than zero,
equal to zero, or greater than zero, respectively.

Assigned GOTO (obsolescent)

The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labels is present, the variable must be one of the labels in the list.

CALL
The CALL statement invokes a subroutine and passes to it a list of arguments.

CASE

Execution of a SELECT CASE statement causes a case expression to be evaluated. The
resulting value is called the case index. If the case index is in the range specified with a
CASE statement’s case selector, the block following the CASE statement, if any, is executed.

Computed GOTO
The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

CONTINUE
Execution of a CONTINUE statement has no effect.

CYCLE
The CYCLE statement curtails the execution of a single iteration of a DO loop.

DO
The DO statement begins a DO construct. A DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

ELSE IF
The ELSE IF statement controls conditional execution of a nested IF block in an IF construct
where all previous IF expressions are false.

ELSE
The ELSE statement controls conditional execution of a block of code in an IF construct
where all previous IF expressions are false.

ELSEWHERE
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’'s mask expression is false.

END DO
The END DO statement ends a DO construct.

END IF
The END IF statement ends an |IF construct.

Lahey Fortran 90 Language Reference 33

Chapter 1 Elements of Fortran

34

END SELECT
The END SELECT statement ends a CASE construct.

END WHERE
The END WHERE statement ends a WHERE construct.

ENTRY
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

EXIT
The EXIT statement terminates a DO loop.

GOTO
The GOTO statement transfers control to a statement identified by a label.

IF
The IF statement controls whether or not a single executable statement is executed.

IF-THEN
The IF-THEN statement begins an IF construct.

PAUSE (Obsolescent)
The PAUSE statement temporarily suspends execution of the program.

RETURN
The RETURN statement completes execution of a subroutine or function and returns control
to the statement following the procedure invocation.

SELECT CASE

The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a case index. The case index is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

STOP
The STOP statement terminates execution of the program.

WHERE

The WHERE statement is used to mask the assignment of values in array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

Specification Statements

ALLOCATABLE

The ALLOCATABLE statement declares allocatable arrays. The shape of an allocatable
array is determined when space is allocated for it by an ALLOCATE statement.

CHARACTER
The CHARACTER statement declares entities of type CHARACTER.

Lahey Fortran 90 Language Reference

Specification Statements

COMMON

The COMMON statement provides a global data facility. It specifies blocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

COMPLEX
The COMPLEX statement declares names of type COMPLEX.

DATA
The DATA statement provides initial values for variables. It is not executable.

Derived-Type Definition Statement
The derived-type definition statement begins a derived-type definition.

DIMENSION
The DIMENSION statement specifies the shape of an array.

DOUBLE PRECISION
The DOUBLE PRECISION statement declares hames of type double precision REAL.

EQUIVALENCE
The EQUIVALENCE statement specifies that two or more objects in a scoping unit share the
same storage.

EXTERNAL
The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

IMPLICIT

The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the statement. Alter-
nately, it can specify that no implicit typing is to apply in the scoping unit.

INTEGER
The INTEGER statement declares names of type INTEGER.

INTENT
The INTENT statement specifies the intended use of a dummy argument.

INTRINSIC

The INTRINSIC statement specifies a list of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

LOGICAL
The LOGICAL statement declares names of type LOGICAL.

NAMELIST
The NAMELIST statement specifies a list of variables which can be referred to by one name
for the purpose of performing input/output.

Lahey Fortran 90 Language Reference 35

Chapter 1 Elements of Fortran

36

MODULE PROCEDURE
The MODULE PROCEDURE statement specifies that the names in the statement are part of
a generic interface.

OPTIONAL
The OPTIONAL statement specifies that any of the dummy arguments specified need not be
associated with an actual argument when the procedure is invoked.

PARAMETER
The PARAMETER statement specifies named constants.

POINTER
The POINTER statement specifies a list of variables that have the POINTER attribute.

PRIVATE
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

PUBLIC
The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appears is used.

REAL
The REAL statement declares names of type REAL.

SAVE
The SAVE statement specifies that all objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or subprogram END statement.

SEQUENCE
The SEQUENCE statement can only appear in a derived type definition. It specifies that the
order of the component definitions is the storage sequence for objects of that type.

TARGET
The TARGET statement specifies a list of object names that have the target attribute and thus
can have pointers associated with them.

TYPE
The TYPE statement specifies that all entities whose names are declared in the statement are
of the derived type named in the statement.

USE
The USE statement specifies that a specified module is accessible by the current scoping unit.
It also provides a means of renaming or limiting the accessibility of entities in the module.

Input/Output Statements

BACKSPACE

The BACKSPACE statement positions the file before the current record, if there is a current
record, otherwise before the preceding record.

Lahey Fortran 90 Language Reference

Assignment and Storage Statements

CLOSE

The CLOSE statement terminates the connection of a specified input/output unit to an exter-
nal file.

ENDFILE
The ENDFILE statement writes an endfile record as the next record of the file. The file is
then positioned after the endfile record, which becomes the last record of the file.

FORMAT
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

INQUIRE
The INQUIRE statement enables the program to make inquiries about a file's existence, con-
nection, access method or other properties.

OPEN
The OPEN statement connects or reconnects an external file and an input/output unit.

PRINT
The PRINT statement transfers values from an output list to an input/output unit.

READ
The READ statement transfers values from an input/output unit to the entities specified in an
input list or a namelist group.

REWIND
The REWIND statement positions the specified file at its initial point.

WRITE

The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Assi gnment and Stora ge Statements
ALLOCATE

For an allocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly has the TARGET
attribute and associates the pointer with that target.

ASSIGN (obsolescent)
Assigns a statement label to an INTEGER variable.

Assignment
Assigns the value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

Lahey Fortran 90 Language Reference 37

Chapter 1 Elements of Fortran

38

DEALLOCATE

The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

NULLIFY
The NULLIFY statement disassociates pointers.

Pointer Assignment
The pointer assignment statement associates a pointer with a target.

Program Structure Statements
BLOCK DATA
The BLOCK DATA statement begins a block data program unit.

CONTAINS

The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

END

The END statement ends a program unit, module subprogram, interface, or internal
subprogram.

FUNCTION

The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it is recursive.

INTERFACE

The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

MODULE
The MODULE statement begins a module program unit.

PROGRAM
The PROGRAM statement specifies a name for the main program.

Statement Function
A statement function is a function defined by a single statement.

SUBROUTINE

The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy
argument names and whether it is recursive.

Lahey Fortran 90 Language Reference

Statement Order

Statement Order
There are restrictions on where a given statement can appear in a program unit or subpro-
gram. In general,

» USE statements come before specification statements;

» specification statements appear before executable statements, but FORMAT,
DATA, and ENTRY statements can appear among the executable statements; and

* module procedures and internal procedures appear following a CONTAINS
statement.

The following table summarizes statement order rules. Vertical lines separate statements
that can be interspersed. Horizontal lines separate statements that cannot be interspersed.

Table 6: Statement Order

PROGRAM, FUNCTION, SUBROUTINE, MODULE,
or BLOCK DATA statement

USE statements

IMPLICIT NONE
PARAMETER IMPLICIT

statements statements

FORMAT
and Derived-type definitions,
ENTRY PARAMETER interface blocks,

statements and DATA type declaration statements,

statements statement function statements,

and specification statements
DATA statements Executable statements

CONTAINS statement

Internal subprograms or module subprograms

END statement

Statements are restricted in whkabping unit{see*Scope” on page 56) they may appear,
as follows:

« An ENTRY statement may only appear in an external subprogram or module
subprogram.

» A USE statement may not appear in a BLOCK DATA program unit.

» A FORMAT statement may not appear in a module scoping unit, BLOCK DATA
program unit, or interface body.

Lahey Fortran 90 Language Reference 39

Chapter 1 Elements of Fortran

« A DATA statement may not appear in an interface body.

» A derived-type definition may not appear in a BLOCK DATA program unit.

« Aninterface block may not appear in a BLOCK DATA program unit.

« A statement function may not appear in a module scoping unit, BLOCK DATA pro-
gram unit, or interface body.

« An executable statement may not appear in a module scoping unit, a BLOCK DATA
program unit, or an interface body.

A CONTAINS statement may not appear in a BLOCK DATA program unit, an inter-
nal subprogram, or an interface body.

Executable Constructs

40

Executable constructs control the execution of blocks of statements and nested constructs.

» The CASE and IF constructs control whether a block will be executetiGa&E
Construct”on page 81 antlF Construct” on page 138).

» The DO construct controls how many times a block will be executedse€on-
struct” on page 108).

» The WHERE construct controls which elements of an array will be affected by a
block of assignment statements (8@8HERE Construct”’on page 233).

Construct Names

Optional construct names can be used with CASE, IF, and DO constructs. Use of construct
names can add clarity to a program. For the DO construct, construct names enable a CYCLE
or EXIT statement to leave a DO nesting level other than the current one. All construct
names must match for a given construct. For example, if a SELECT CASE statement has a
construct name, the corresponding CASE and END SELECT statements must have the same
construct name.

Lahey Fortran 90 Language Reference

Procedures

Procedures

Fortran has two varieties of procedures: functions and subroutines. Procedures are further
categorized in the following table:

Table 7: Procedures

Generic Intrinsic
Intrinsic Functions
Functions Specific Intrinsic
Functions
_ Generic External
Functions External Functions
Functions Specific External
Functions

Internal Functions

Statement Functions

Generic Intrinsic

Intrinsic Subroutines

Subroutines

Specific Intrinsic
Subroutines

Subroutines Generic External

External Sub- Subroutines

routines

Specific External
Subroutines

Internal Subroutines

Intrinsic proceduresare built-in procedures that are provided by the Fortran processor.

An external procedurés defined in a separate program unit and can be separately compiled.
It is not necessarily coded in Fortran. External procedures and intrinsic procedures can be
referenced anywhere in the program.

An internal procedurds contained within another program unit. It can only be referenced
from within the containing program unit.

Internal and external procedures can be referenced recursively if the RECURSIVE keyword
is included in the procedure definition.

Lahey Fortran 90 Language Reference 41

Chapter 1 Elements of Fortran

Intrinsic and external procedures can be eipecificor generic A generic procedure has
specific versions, which can be referenced by the generic name. The specific version used is
determined by the type, kind, and rank of the arguments.

Additionally, intrinsic procedures can beementabrnon-elemental An elemental intrinsic
procedure can take as an argunagtiter a scalar or an array. If the procedure takes an array
as an argument, it operates on each element in the array as if it were a scalar.

Each of the various kinds of Fortran procedures is described in more detail below.

Intrinsic Procedures

Intrinsic procedures are built-in procedures provided by the Fortran processor. Fortran has
over one hundred standard intrinsic procedures. Each is documented in detail in the Alpha-
betical Reference. A table is providedlmirinsic Procedures”on page 249.

Subroutines

A subroutine is a self-contained procedure that is invoked using a CALL statement. For
example,

program main
implicit none
interface ! an explicit interface is provided
subroutine multiply(x, y)
implicit none
real, intent(in out) :: x
real, intent(in) :: y
end subroutine multiply
end interface

real::a, b
a=4.0
b=12.0
call multiply(a, b)
print*, a

end program main

subroutine multiply(x, y)
implicit none
real, intent(in out) :: x
real, intent(in) :: y
multiply = x*y

end subroutine multiply

42 Lahey Fortran 90 Language Reference

Functions

This program calls the subroutimeiltiply — and passes two REAdctual arguments and
b. The subroutinenultiply 's correspondinglummy arguments andy, refer to the same
storage aa andb in main. When the subroutine returrshas the value 48.0 aihds
unchanged.

The syntax for a subroutine definition is

subroutine-stmt
[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-subroutine-stmt

Where:
subroutine-stmis a SUBROUTINE statement.

use-stmtss zero or more USE statements.
specification-paris zero or more specification statements.
execution parts zero or more executable statements.

internal-subprogram-paris
CONTAINS
procedure-definitions

procedure-definitionss one or more procedure definitions.

end-subroutine-stni
END [SUBROUTINE[subroutine-name]]

subroutine-names the name of the subroutine.

Functions

A function is a procedure that produces a single scalar or array result. Itis used in an expres-
sion in the same way a variable is. For example, in the following program,

Lahey Fortran 90 Language Reference 43

Chapter 1 Elements of Fortran

program main
implicit none
interface ! an explicit interface is provided
function square(x)
implicit none
real, intent(in) :: x
real :: square
end function square
end interface
real :: a, b=3.6, c=3.8, square
a=3.7 + b + square(c) + sin(4.7)
print*, a
stop
end program main

function square(x)
implicit none
real, intent(in) :: x
real :: square
square = x*x
return

end function square

square(c) andsin(4.7) are function references.
The syntax for a function reference is
function-namdactual-arg-lis)

Where:
function-namas the name of the function.

actual-arg-listis a list of actual arguments.

A function can be defined as an internal or external function or as a statement function.

44 Lahey Fortran 90 Language Reference

Functions

External Functions
External functions can be called from anywhere in the program. The syntax for an external
function definition is

function-stmt

[use-stmts]

[specification-part]

[execution-part]

[internal-subprogram-part]

end-function-stmt
Where:
function-stmis a FUNCTION statement.
use-stmtss zero or more USE statements.
specification-paris zero or more specification statements.
execution parts zero or more executable statements.

internal-subprogram-paris
CONTAINS

procedure-definitions
procedure-definitiongs one or more procedure definitions.

end-function-stmis
END [FUNCTION [function-name]]

function-names the name of the function.

Statement Functions

A statement function (sé8tatement Function Statemerih page 217) is a function defined

on a single line with a single expression. It can only be referenced within the program unit
in which it is defined. A statement function is best used where speed is more important than
reusability in other locations, and where the function can be expressed in a single expression.
The following is an example equivalent to the external function examfiaiictions” on

page 43:

Lahey Fortran 90 Language Reference 45

Chapter 1 Elements of Fortran

46

program main

real :: a, b=3.6, c=3.8, square
square(x) = x*x

a=3.7 + b + square(c) + sin(4.7)
print*, a

end

Internal Procedures

A procedure can contain other procedures, which can be referenced only from within the host
procedure. Such procedures are knowim&snal procedures An internal procedure is
specified within the host procedure following a CONTAINS statement, which must appear
after all the executable code of the containing subprogram. The form of an internal procedure
is the same as that of an external procedure.

Example:

subroutine external ()

call internal () I reference to internal procedure

contains
subroutine internal () ! only callable from external()
end subroutine internal

end subroutine external

Names from the host procedure are accessible to the internal procedure. This i®stlled
association

Recursion

A Fortran procedure can reference itself, either directly or indirectly, only if the RECUR-
SIVE keyword is specified in the procedure definition. A function that calls itself directly
must use the RESULT option (S#8JNCTION Statement’on page 131).

Procedure Arguments

Arguments provide a means of passing information between a calling procedure and a pro-
cedure it calls. The calling procedure provides a ligsictdial arguments The called

procedure accepts a list@dmmy arguments

Lahey Fortran 90 Language Reference

Procedure Arguments

Argument Intent

Because Fortran passes arguments by reference, unwanted side effects can occur when an
actual argument’s value is changed by the called procedure. To protect the program from
such unwanted side effects, the INTENT attribute is provided. A dummy argument can have
one of the following attributes:

e INTENT (IN), when it is to be used to input data to the procedure and not to return
results to the calling subprogram;

* INTENT (OUT), when it is to be used to return results but not to input data; and

e INTENT (IN OUT), when it is to be used for inputting data and returning a result.
This is the default argument intent.

The INTENT attribute is specified for dummy arguments using the INTENT statement or in
a type declaration statement.

Keyword Arguments

Using keyword arguments, the programmer can specify explicitly which actual argument
corresponds to which dummy argument, regardless of position in the actual argument list. To
do so, specify the dummy argument name along with the actual argument, using the follow-
ing syntax:

keyword= actual-arg

Where:
keywordis the dummy argument name.

actual-argis the actual argument.

Example:

call zee(c=1, b=2, a=3)

subroutine zee(a,b,c)

In the example, the actual arguments are provided in reverse order.

A procedure reference can use keyword arguments for zero, some, or all of the actual argu-
ments (seéOptional Arguments”below). For those arguments not having keywords, the
order in the actual argument list determines the correspondence with the dummy argument
list. Keyword arguments must appear after any non-keyword arguments.

Note that for a procedure invocation to use keyword arguments an explicit interface must be
present (se#rocedure Interfaces’on page 49).

Lahey Fortran 90 Language Reference 47

Chapter 1 Elements of Fortran

48

Optional Arguments

An actual argument need not be provided for a corresponding dummy argument with the
OPTIONAL attribute. To make an argument optional, specify the OPTIONAL attribute for
the dummy argument, either in a type declaration statement or with the OPTIONAL
statement.

An optional argument at the end of a dummy argument list can simply be omitted from the
corresponding actual argument list. Keyword arguments must be used to omit other optional
arguments, unless all of the remaining arguments in the reference are omitted. For example,

subroutine zee(a, b, c)
implicit none
real, intent(in), optional :: a, c
real, intent(in out) :: b

end subroutine zee

In the above subroutine,andc are optional arguments. In the following calls, various com-
binations of optional arguments are omitted:

call zee(b=3.0) I 'a and c omitted, keyword necessary
call zee(2.0, 3.0) !c omitted
call zee(b=3.0, c=8.5) ! a omitted, keywords necessary

It is usually necessary in a procedure body to know whether or not an optional argument has
been provided. The PRESENT intrinsic function takes as an argument the name of an
optional argument and returns true if the argument is present and false otherwise. A dummy
argument or procedure that is not present must not be referenced except as an argument to
the PRESENT function or as an optional argument in a procedure reference.

Note that for a procedure to have optional arguments an explicit interface must be present
(see'Procedure Interfaces’on page 49). Many of the Fortran intrinsic procedures have
optional arguments.

Alternate Returns (obsolescent)
A procedure can be made to return to a labeled statement in the calling subprogram using an
alternate return The syntax for an alternate return dummy argument is

*
The syntax for an alternate return actual argument is
* label

Where:
labelis a labelled executable statement in the calling subprogram.

An argument to the RETURN statement is used in the called subprogram to indicate which
alternate return in the dummy argument list to take. For example,

Lahey Fortran 90 Language Reference

Procedure Interfaces

call zee(a,b,*200,c,*250)

subroutine zee(a, b, *, c, *)

return 2 I returns to label 250 in calling procedure

return 1 ! returns to label 200 in calling procedure
return I normal return

Dummy Procedures

A dummy argument can be the name of a procedure that is to be referenced in the called sub-
program or is to appear in an interface block or in an EXTERNAL or INTRINSIC statement.
The corresponding actual argument must not be the name of an internal procedure or state-
ment function.

Procedure Interfaces

A procedure interface is all the characteristics of a procedure that are of interest to the Fortran
processor when the procedure is invoked. These characteristics include the name of the pro-
cedure, the number, order, type parameters, shape, and intent of the arguments; whether the
arguments are optional, and whether they are pointers; and, if the reference is to a function,
the type, type parameters, and rank of the result, and whether it is a pointer. If the function
result is not a pointer, its shape is an important characteristic. The interface can be explicit,
in which case the Fortran processor has access to all characteristics of the procedure inter-
face, or implicit, in which case the Fortran processor must make assumptions about the
interface.

Explicit Interfaces
It is desirable, to avoid errors, to create explicit interfaces whenever possible. In each of the
following cases, an explicit interface is mandatory:

If a reference to a procedure appears

» with a keyword argument,

» as a defined assignment,

» in an expression as a defined operator, or
» as areference by its generic name;

or if the procedure has

e an optional dummy argument,

* an array-valued result,

* adummy argument that is an assumed-shape array, a pointer, or a target,

Lahey Fortran 90 Language Reference 49

Chapter 1 Elements of Fortran

e a CHARACTER result whose length type parameter value is neither assumed nor
constant, or
* aresult that is a pointer.

An interface is always explicit for intrinsic procedures, internal procedures, and module pro-
cedures. A statement function’s interface is always implicit. In other cases, explicit
interfaces can be established usingrarface block

Syntax:
interface-stmt
[interface-body] ...
[module procedure statement] ...
end-interface statement

Where:
interface-stmis an INTERFACE statement.

interface-bodyis
function-stmt
[specification-part]
end stmt

or
subroutine-stmt
[specification-part]
end-stmt

module-procedure-stnis a MODULE PROCEDURE statement.
end-interface-stnis an END INTERFACE statement.
function-stmis a FUNCTION statement.

subroutine-stmis a SUBROUTINE statement.
specification-paris the specification part of the procedure.
end-stmis an END statement.

Example:
interface
subroutine x(a, b, c)
implicit none
real, intent(in), dimension (2,8) :: a
real, intent(out), dimension (2,8) :: b, ¢
end subroutine x
function y(a, b)
implicit none
logical, intent (in) :: a, b
end function y
end interface

50 Lahey Fortran 90 Language Reference

Procedure Interfaces

In this example, explicit interfaces are provided for the proceduagsly. Any errors in
referencing these procedures in the scoping unit of the interface block will be diagnosed at
compile time.

Generic Interfaces

An INTERFACE statement with generic-namésee’INTERFACE Statementdn page

151) specifies a generic interface for each of the procedures in the interface block. In this
way external generic procedures can be created, analogous to intrinsic generic procedures.

Example:
interface swap ! generic swap routine
subroutine real_swap(x, y)
implicit none
real, intent (in out) :: X, y
end subroutine real_swap
subroutine int_swap(x, y)
implicit none
integer, intent (in out) :: X, y
end subroutine int_swap
end interface

Here the generic procedwseap can be used with both the REAL and INTEGER types.

Defined Operations

Operators can be extended and new operators created for user-defined and intrinsic data
types. This is done using interface blocks with INTERFACE OPERATOR'(S8&R-

FACE Statementbn page 151).

A defined operation has the form
operator operand

for a defined unary operation, and
operand operator operand

for a defined binary operation, whesperatoris one of the intrinsic operators or a user-
defined operator of the form

.operator-name
where operator-nameconsists of one to 31 letters.
For example, either

a .intersection. b

or

Lahey Fortran 90 Language Reference 51

Chapter 1 Elements of Fortran

52

might be used to indicate the intersection of two sets. The generic interface block might look
like

interface operator (.intersection.)
function set_intersection (a, b)
implicit none
type (set), intent (in) :: a, b, set_intersection
end function set_intersection
end interface

for the first example, and

interface operator (*)
function set_intersection (a, b)
implicit none
type (set), intent (in) :: a, b, set intersection
end function set_intersection
end interface

for the second example. The functisn_intersection would then contain the code to
determine the intersection afandb.

The precedence of a defined operator is the same as that of the corresponding intrinsic oper-
ator if an intrinsic operator is being extended. If a user-defined operator is used, a unary
defined operation has higher precedence than any other operation, and a binary defined oper-
ation has a lower precedence than any other operation.

An intrinsic operation (such as addition) cannot be redefined for valid intrinsic operands. For
example, it is illegal to redefine plus to mean minus for numeric types.

The functions specified in the interface block take either one argument, in the case of a
defined unary operator, or two arguments, for a defined binary operator. The operand or
operands in a defined operation become the arguments to a function specified in the interface
block, depending on their type, kind, and rank. If a defined binary operation is performed,
the left operand corresponds to the first argument and the right operand to the second argu-
ment. Both unary and binary defined operations for a particular operator may be specified in
the same interface block.

Defined Assignment

The assignment operator may be extended using an interface block with INTERFACE
ASSIGNMENT (se¢INTERFACE Statementdbn page 151). The mechanism is similar to

that used to resolve a defined binary operation“@efined Operations’on page 51), with

the variable on the left side of the assignment corresponding to the first argument of a sub-
routine in the interface block and the data object on the right side corresponding to the second
argument. The first argument must be INTENT (OUT) or INTENT (IN OUT); the second
argument must be INTENT (IN).

Lahey Fortran 90 Language Reference

Program Units

Example:
interface assignment (=) ! use = for integer to
! logical array
subroutine integer_to_logical_array (b, n)

implicit none
logical, intent (out) :: b(:)
integer, intent (in) :: n
end subroutine integer_to_logical_array
end interface

Here the assignment operator is extended to convert INTEGER data to a LOGICAL array.

Program Units

Program units are the smallest elements of a Fortran program that may be separately com-
piled. There are five kinds of program units:

* Main Program

« External Function Subprogram

» External Subroutine Subprogram
» Block Data Program Unit

* Module Program Unit

External Functions and Subroutines are describ&guinctions” on page 43 antintrinsic
Procedures”on page 42.

Main Pro gram

Execution of a Fortran program begins with the first executable statement in the main pro-
gram and ends with a STOP statement anywhere in the program or with the END statement
of the main program.

The form of a main program is

[program-stmt]

[use-stmts]
[specification-part]
[execution-part]
[internal-subprogram-part]
end-stmt

Where:
program-stmis a PROGRAM statement.

use-stmtss one or more USE statements.

Lahey Fortran 90 Language Reference 53

Chapter 1 Elements of Fortran

54

specification-paris one or more specification statements or interface blocks.

execution-parts one or more executable statements, other than RETURN or ENTRY
statements.

internal-subprograms one or more internal procedures.

end-stmis an END statement.

Block Data Program Units

A block data program unit provides initial values for data in one or more named common
blocks. Only specification statements may appear in a block data program unit. A block data
program unit may be referenced only in EXTERNAL statements in other program units.

The form of a block data program unit is

block-data-stmt
[specification-part]
end-stmt

Where:
block-data-stmis a BLOCK DATA statement.

specification-paris one or more specification statements, other than ALLOCATABLE,
INTENT, PUBLIC, PRIVATE, OPTIONAL, and SEQUENCE.

end-stmis an END statement.

Module Program Units

Module program units provide a means of packaging anything that is required by more than
onescoping unit(a scoping unit is a program unit, subprogram, derived type definition, or
procedure interface body, excluding any scoping units it contains). Modules may contain
type specifications, interface blocks, executable code in module subprograms, and references
to other modules. The names in a module can be specified PUBLIC (accessible wherever the
module is used) or PRIVATE (accessible only in the scope of the module itself). Typical
uses of modules include

« declaration and initialization of data to be used in more than one subprogram without
using common blocks.

» specification of explicit interfaces for procedures.

» definition of derived types and creation of reusable abstract data types (derived types
and the procedures that operate on them).

In Lahey Fortran, any module program units must appear before any other program units in
a source file.

Lahey Fortran 90 Language Reference

Module Program Units

The form of a module program unit is

module-stmt

[use-stmts]
[specification-part]
[module-subprogram-part]
end-stmt

Where:
module-stmis a MODULE statement.

use-stmtss one or more USE statements.

specification-paris one or more interface blocks or specification statements other than
OPTIONAL or INTENT.

module-subprograrpart is CONTAINS, followed by one or more module procedures.

end-stmis an END statement.

Example:
module example
implicit none
integer, dimension(2,2) :: barl=1, bar2=2
type phone_number Iderived type definition

integer :: area_code,number
end type phone_number

interface lexplicit interfaces
function test(sample,result)
implicit none
real :: test

integer, intent(in) :: sample,result
end function test
function count(total)
implicit none
integer :: count
real,intent(in) :: total
end function count
end interface

interface swap Igeneric interface
module procedure swap_reals,swap_integers
end interface

contains

function swap_reals Imodule procedure

end function swap_reals

Lahey Fortran 90 Language Reference 55

Chapter 1 Elements of Fortran

Scope

function swap_integers !module procedure

end function swap_integers
end module example

Module Procedures

Module procedures have the same rules and organization as external procedures. They are
analogous to internal procedures, however, in that they have access to the data of the host
module. Only program units that use the host module have access to the module’s module
procedures. Procedures may be made local to the module by specifying the PRIVATE
attribute in a PRIVATE statement or in a type declaration statement within the module.

Using Modules
Information contained in a module may be made available within another program unit via
the USE statement. For example,

use set_module

would give the current scoping unit access to the names in msetubeodule . If a name
in set_module conflicts with a name in the current scoping unit, an error occurs only if that
name is referenced. To avoid such conflicts, the USE statement has an aliasing facility:

use set_module, a=>b
Here the module entity would be known as in the current scoping unit.

Another way of avoiding name conflicts, if the module entity name is not needed in the cur-
rent scoping unit, is with the ONLY form of the USE statement:

use set_module, only : ¢, d
Here, only the nameasandd are accessible to the current scoping unit.

Forward references to modules are not allowed in Lahey Fortran. That is, if a module is used
in the same source file in which it resides, the module program unit must appear before its
use.

Names of program units, common blocks, and external procedures have global scope. That
is, they may be referenced from anywhere in the program. A global name must not identify
more than one global entity in a program.

Names of statement function dummy arguments have statement scope. The same name may
be used for a different entity outside the statement, and the name must not identify more than
one entity within the statement.

56 Lahey Fortran 90 Language Reference

Data Sharing

Names of implied-do variables in DATA statements and array constructors have a scope of
the implied-do list. The same name may be used for a different entity outside the implied-
DO list, and the name must not identify more than one entity within the implied-DO list.

Other names have local scope. The local scope, calembing unitjs one of the following:
» aderived-type definition, excluding the name of the derived type.

e aninterface body, excluding any derived-type definitions or interface bodies within
it.

e aprogram unit or subprogram, excluding derived-type component definitions, inter-
face bodies, and subprograms contained within it.

Names in a scoping unit may be referenced from a scoping unit contained within it, except
when the same name is declared in the inner, contained scoping unit. This is khosn as
association For example,

subroutine external ()
implicit none
integer ::a, b

contains

subroutine internal ()
implicit none
integer :: a

a=b !ais the local a;
! b is available by host association

end subroutine internal

end subroutine external

In the statemerd=b, abovea is thea declared in subroutineternal , not thea declared
in subroutineexternal . b is available fronexternal by host association.

Data Sharing

To make an entity available to more than one program unit, pass it as an argument, place it
in a common block (seé€€OMMON Statement’on page 89), or declare it in a module and
use the module (séModule Program Units”on page 54).

Lahey Fortran 90 Language Reference 57

Chapter 1 Elements of Fortran

58 Lahey Fortran 90 Language Reference

Alphabetical
Reference

ABS Function

Description

Absolute value.

Syntax
ABS (a)

Arguments
a must be of type REAL, INTEGER, or COMPLEX.

Result
If ais of type INTEGER or REAL, the result is of the same typeasd has the valual] if
ais COMPLEX with valueXyy), the result is a REAL representation 2 4 y2

Example

x = abs(-4.2) !x is assigned the value 4.2

ACHAR Function

Description

Character in a specified position of the ASCII collating sequence.

Lahey Fortran 90 Language Reference 59

Chapter 2 Alphabetical Reference

Syntax
ACHAR (i)

Arguments
i must be of type INTEGER.

Result
A CHARACTER of length one that is the character in positippf(the ASCII collating

sequence.

Example
¢ = achar(65) ! c is assigned the value 'A'

ACOS Function

Description
Arccosine.

Syntax
ACOS §)

Arguments
x must be of type REAL and must be within the rares x< 1

Result
A REAL representation, expressed in radians, of the arccosie of

Example

r =acos(.5) !ris assigned the value 1.04720

ADJUSTL Function

Description
Adjust to the left, removing leading blanks and inserting trailing blanks.

60 Lahey Fortran 90 Language Reference

ADJUSTR Function

Syntax
ADJUSTL (string)

Arguments
string must be of type CHARACTER.

Result

A CHARACTER of the same length and kindsaisng. Its value is the same as thastifng

except that any leading blanks have been deleted and the same number of trailing blanks has
been inserted.

Example
adjusted = adjustl(' string’)
I adjusted is assigned the value 'string '

ADJUSTR Function

Description
Adjust to the right, removing trailing blanks and inserting leading blanks.

Syntax
ADJUSTR tring)

Arguments
string must be of type CHARACTER.

Result

A CHARACTER of the same length and kindsaisng. Its value is the same as thastifng

except that any trailing blanks have been deleted and the same number of leading blanks has
been inserted.

Example
adjusted = adjustr('string ‘)
I adjusted is assigned the value ' string'

AIMAG Function

Description
Imaginary part of a complex number.

Lahey Fortran 90 Language Reference 61

Chapter 2 Alphabetical Reference

Syntax
AIMAG (2

Arguments
z must be of type COMPLEX.

Result
A REAL with the same kind a& If z has the valuex(y) then the result has the valye

Example
r =aimag(-4.2,5.1) !ris assigned the value 5.1

AINT Function

Description
Truncation to a whole number.

Syntax
AINT (&, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

A REAL value with the kind specified ind, if present; otherwise with the kind af The
result is equal to the value afwithout its fractional part.

Example

r = aint(-7.32,2) !ris assigned the value -7.0
! with kind 2

ALL Function

Description
Determine whether all values in a mask are true along a given dimension.

62 Lahey Fortran 90 Language Reference

ALLOCATABLE Statement

Syntax
ALL (mask dim)

Required Arguments
maskmust be of type LOGICAL. It must not be scalar.

Optional Arguments

dim must be a scalar of type INTEGER with a value within the rdng&<n , wahsre
the rank ofmask The corresponding actual argument must not be an optional dummy
argument.

Result

The result is of type LOGICAL with the same kind as MASK. Its value and rank are com-
puted as follows:

1. If dimis absent omaskhas rank one, the result is scalar. The result has the value
true if all elements ofhaskare true.

2. Ifdimis present omaskhas rank two or greater, the result is an array ofmahknd
of shape (dy, d,, ..., dgim—1, Agim+ 1, ---» d,) wherg(d,, d,, ..., d,) s the shape
of maskandn is the rank ofnask The result has the value true for each correspond-
ing vector inmaskthat evaluates to true for @&llements in that vector.

Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: ¢
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 3 5]
|2 46
b = reshape((/1,2,3,5,6,4/), (/2,3/))
I represents |1 3 6|
|25 4|
e = all(a==b) ! e is assigned the value false
d = all(a==b, 1)! d is assigned the value true,false,
| false
¢ = all(a==h, 2)! c is assigned the value false,false

ALLOCATABLE Statement

Description
The ALLOCATABLE statement declares allocatable arrays. The shape of an allocatable
array is determined when space is allocated for it by an ALLOCATE statement.

Lahey Fortran 90 Language Reference 63

Chapter 2 Alphabetical Reference

Syntax

ALLOCATABLE [::] array-name [deferred-shapy [, array-name(deferred-
shapé)] ...

Where:
array-nameis the name of an array.

deferred-shapés : [, :] ... where the number of colons is equal to the rardriafy-name.
Remarks
Thearray-namemust not be a dummy argument or a function result.

If the DIMENSION of array-name is specified elsewhere in the scoping unit, it must be spec-
ified as adeferred-shape

Example
integer :: a, b, c(:,:,:) ! rank of c is specified
dimension b(:,:) !'rank of b is specified

allocatable a(;), b, ¢ !rank of a is specified,
I a,b, and c are allocatable
allocate (a(2), b(3,-1:1), ¢(10,10,10))
! shapes specified,
! space allocated

deallocate (a,b,c) I space deallocated

ALLOCATE Statement

Description

For an allocatable array the ALLOCATE statement defines the bounds of each dimension
and allocates space for the array.

For a pointer the ALLOCATE statement creates an object that implicitly has the TARGET
attribute and associates the pointer with that target.

Syntax
ALLOCATE (allocation-list [, STAT =stat-variable)

Where:
allocation-listis a comma-separated list of pointers or allocatable arrays and, for each allo-
catable array, a list of dimension boundslofver-bound:] upper-bound [... 1)

upper boundandlower-boundare scalar INTEGER expressions.

stat-variableis a scalar INTEGER variable.

64 Lahey Fortran 90 Language Reference

ALLOCATE Statement

Remarks

If the optional STAT= is present and the ALLOCATE statement succstds;ariableis
assigned the value zero. If STAT=is present and the ALLOCATE statemersttilsri-
ableis assigned the number of the error message generated at runtime.

If an error condition occurs during execution of an ALLOCATE statement that does not con-
tain the STAT= specifier, execution of the executable program is terminated.

For an allocatable array:
1. Subsequent redefinition wfwer-boundor upper-boundloes not affect the array
bounds.

2. If lower-bounds omitted, the default value is one.

3. If upper-bounds less thatower-boundthe extent of that dimension is zero and the
array has zero size.

4. The allocatable array can be of type CHARACTER with zero length.

5. Allocating a currently allocated allocatable array causes an error condition in the
ALLOCATE statement.

6. The ALLOCATED intrinsic function can be used to determine whether an allocat-
able array is currently allocated.

For a pointer:
1. If a pointer that is currently associated with a target is allocated, a new pointer target
is created and the pointer is associated with that target.

2. The ASSOCIATED intrinsic function can be used to determine whether a pointer is
currently associated with a target.

3. A function whose result is a pointer must cause the pointer to be associated or
dissociated.

Example
logical :: I,m
integer, pointer :: i
integer, allocatable, dimension (;,:) :: j
| = associated (i) ! is assigned the value false
m = allocated (j) ! mis assigned the value false
allocate (j(4,-2:3))! shape of J defined,
I space allocated
allocate (i) I'i points to unnamed target
| = associated (i) !l is assigned the value true
m = allocated (j) ! mis assigned the value true

deallocate (i,j) ! space deallocated

Lahey Fortran 90 Language Reference 65

Chapter 2 Alphabetical Reference

ALLOCATED Function

Description
Indicate whether an allocatable array has been allocated.

Syntax
ALLOCATED (array)

Arguments
array must be an allocatable array.

Result

The result is a scalar of default LOGICAL type. It has the value taredy is currently
allocated and false #frray is not currently allocated. The result is undefined if the allocation
status ofarray is undefined.

Example
integer, allocatable :: i(:,:)
allocate (i(2,3))
| = allocated (i) ! | is assigned the value true

ANINT Function

66

Description
REAL representation of the nearest whole number.

Syntax
ANINT (a, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is of type REAL. Kindis present, the kind is that specifiedkigd; otherwise,
it is the kind ofa. If a> 0, the result has the value INiI€ 0.5); if a< 0 , the result has the
value INT@ - 0.5).

Lahey Fortran 90 Language Reference

ANY Function

Example
x = anint (7.73) ! x is assigned the value 8.0

ANY Function

Description:
Determine whether any values are true in a mask along a given dimension.

Syntax
ANY (maskdim)

Required Arguments
maskmust be of type LOGICAL. It must not be scalar.

Optional Arguments

dimmust be a scalar of type INTEGER with a value within the radngex<n , wahisre

the rank ofmask The corresponding actual argument must not be an optional dummy
argument.

Result

The result is of type LOGICAL with the same kind as mask. Its value and rank are computed
as follows:

1. If dimis absent omaskhas rank one, the result is scalar. The rdmdtthe value
true if any elements ohaskare true.

2. If dimis present omaskhas rank two or greater, the result is an array ofmahknd
of shape (d, dy, ..., d4im—1 dgim+ 1, ---»dy) wherg(d,, d,, ..., d;) s the shape
of maskandn is the rank omask The result has the value true for each correspond-
ing vector inmaskthat evaluates to true for arlement in that vector.

Lahey Fortran 90 Language Reference 67

Chapter 2 Alphabetical Reference

Example
integer, dimension (2,3) :: a, b
logical, dimension (2) :: ¢
logical, dimension (3) :: d
logical :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 3 5]
|2 4 6
b = reshape((/1,2,3,5,6,4/), (/2,3/))
I represents |1 3 6|
|25 4]
e = any(a==b) ! e is assigned the value true
d = any(a==b, 1)! d is assigned the value true, true,
| false
¢ = any(a==b, 2)! cis assigned the value true, true

Arithmetic IF Statement (obsolescent)

68

Description

Execution of an arithmetic IF statement causes evaluation of an expression followed by a
transfer of control. The branch target statement identified by the first, second, or third label
is executed next if the value of the expression is less than zero, equal to zero, or greater than
zero, respectively.

Syntax
IF (expn label, label, label

Where:
expris a scalar numeric expression.

labelis a statement label.

Remarks
Eachlabel must be the label of a branch target statement that appears in the same scoping
unit as the arithmetic IF statement.

exprmust not be of type COMPLEX.
The saméabel can appear more than once in one arithmetic IF statement.
Example

if (b) 10,20,30 ! goto 10 if b<0

I goto 20 if b=0
I goto 30 if b>0

Lahey Fortran 90 Language Reference

ASIN Function

ASIN Function

Description
Arcsine.

Syntax
ASIN ()

Arguments
x must be of type REAL and must be in the rarde< x< 1

Result
The result has the same kindxadlts value is a REAL representation of the arcsing of
expressed in radians.

Example
r =asin(.5) !ris assigned the value 0.523599

Assighed GOTO Statement (obsolescent)

Description

The assigned GOTO statement causes a transfer of control to the branch target statement indi-
cated by a variable that was assigned a statement label in an ASSIGN statement. If the
parenthesized list of labels is present, the variable must be one of the labels in the list.

Syntax
GOTOassign-variable [[,] (label9]

Where:
assign-variablds a scalar INTEGER variable that was assigned a label in an ASSIGN
statement.

labelsis a comma-separated list of statement labels.

Remarks
At the time of execution of the GOTO statemesisign-variablenust be defined with the
value of a label of a branch target statement in the same scoping unit.

Example
assign 100to i
goto i
100 continue

Lahey Fortran 90 Language Reference 69

Chapter 2 Alphabetical Reference

ASSIGN Statement (obsolescent)

Description
Assigns a statement label to an INTEGER variable.

Syntax
ASSIGNIabel TO assign-variable

Where:
label is a statement label.

assign-variablds a scalar INTEGER variable.

Remarks

assign-variablenust be a named variable of default INTEGER kind. It must not be a struc-
ture component or an array element.

label must be the target of a branch target statement or the label of a FORMAT statement in
the same scoping unit.

When defined with an INTEGER valuassign-variablanust not be used as a label.
When assigned a labalssign-variablenust not be used as anything except a label.
Example

assign 100 to i

goto i
100 continue

Assignment Statement

70

Description
Assigns the value of the expression on the right side of the equal sign to the variable on the
left side of the equal sign.

Syntax
variable = expression

Where:
variableis a scalar variable, an array, or a variable of derived type.

expressiorns an expression whose result is conformable watiiable.

Lahey Fortran 90 Language Reference

Assignment Statement

Remarks

A numeric variable can only be assigned a numeric; a CHARACTER variable can only be
assigned a CHARACTER with the same kind; a LOGICAL variable can only be assigned a
LOGICAL; and a derived type variable can only be assigned the same derived type.

Evaluation ofexpressioriakes place before the assignment. If the kineikpfessions dif-
ferent from that ofariable, the result oExpressiorundergoes an implicit type conversion
to the kind and type ofariable Precision can be lost.

If expressions array-valued, thevariablemust be an array. &xpressiors scalar andari-
ableis an array, all elements wériableare assigned the value efpression

If variable is a pointer, it must be associated with a target. The target is assigned the value
of expression

If variable andexpressiorare of CHARACTER type with different lengthexpressions
truncated if longer thavariable and padded on the right with blankexpressioris shorter
thanvariable.

Example
real :: a=1.5, b(10)
integer :: i=2, j(10)
character (len = 5) :: string5 = "abcde"
character (len = 7) :: string7 = "cdefghi”
type person
integer :: age
character (len = 25) :: name
end type person
type (person) :: personl, person2

i=a liis assigned int(a)

i=j I error

j=i I each element in j assigned
I the value 2

j=b ! each element in j assigned

I corresponding value in b
I converted to integer
string5 = string7 ! string5 is assigned "cdefg”
string7 = string5 ! string7 is assigned "abcde "
personl % age =5
personl % name = "john"
person2 = personl ! each component of person2 is
I assigned the value of the
I corresponding component
I of personl

Lahey Fortran 90 Language Reference 71

Chapter 2 Alphabetical Reference

ASSOCIATED Function

Description
Indicate whether a pointer is associated with a target.

Syntax
ASSOCIATED pointer, targef)

Required Arguments
pointermust be a pointer whose pointer association status is not undefined.

Optional Arguments

targetmust be a pointer or target. If itis a pointer, its pointer association status must not be
undefined.

Result

The result is of type default LOGICAL. térgetis absent, the result is trueibinteris cur-
rently associated with a target and false if it is notarijetis present and is a target, the
result is true ipointeris currently associated witargetand false if it is not. Ifargetis
present and is a pointer, the result is true if Ipoiinterandtargetare currently associated
with the same target and false if they are not.

Example
real, pointer :: a, b, e
real, target :: c, f
logical :: |
a=>c
b=>c
e=>f
| = associated (a) !lis assigned the value true
| = associated (a, c) ! | is assigned the value true
| = associated (a, b) ! | is assigned the value true
| = associated (a, f) ! | is assigned the value false
| = associated (a, €) ! | is assigned the value false

ATAN Function

Description
Arctangent.

72 Lahey Fortran 90 Language Reference

ATAN2 Function

Syntax
ATAN (x)

Arguments
x must be of type REAL.

Result

The result is a REAL representation of the arctangexteXpressed in radians, that lies
within the range-TV2< x<1v/2

Example
a = atan(.5) ! ais assigned the value 0.463648

ATANZ2 Function

Description
Arctangent ofy/x (principal value of the argument of the complex numkgy)(

Syntax
ATAN2 (y, X)

Arguments
y must be of type REAL.
x must be of the same kind gsIf y has the value zerg,must not have the value zero.

Result

The result is of the same kind»xaslts value is a REAL representation, expressed in radians,
of the argument of the complex numbeyy).

Example
x = atan2 (1, 1) ! x is assigned the value 0.785398

BACKSPACE Statement

Description

The BACKSPACE statement positions the file before the current record if there is a current
record, otherwise before the preceding record.

Lahey Fortran 90 Language Reference 73

Chapter 2 Alphabetical Reference

Syntax
BACKSPACEunit-number

or
BACKSPACE position-spec-list

Where:

unit-numberis a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-lists [UNIT =] unit-number][, ERR =label][, IOSTAT =stat Jwhere
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, theanumber
must be first.

labelis a statement label that is branched to if an error condition occurs during execution of
the statement.

statis a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
If there is no current record and no preceding record, the file position is left unchanged.
If the preceding record is an endfile record, the file is positioned before the endfile record.

If the BACKSPACE statement causes the implicit writing of an endfile record, the file is
positioned before the record that precedes the endfile record.

Backspacing a file that is connected but does not exist is prohibited.

Backspacing over records using list-directed or namelist formatting is prohibited.

Example
backspace 10 ! file connected to unit 10 backspaced
backspace (10, err = 100)
I file connected to unit 10 backspaced
I on error goto label 100

BIT_SIZE Function

74

Description
Size, in bits, of a data object of type INTEGER.

Lahey Fortran 90 Language Reference

BLOCK DATA Statement

Syntax
BIT_SIZE ()

Arguments
i must be of type INTEGER.

Result
The result has the same kindiadts value is equal to the number of bits.in

Example
integer :: i, m
integer, dimension (2) ::j, n
m = bit_size (i) ! m is assigned the value 32
n = bit_size (j) ! nis assigned the value [32 32]

BLOCK DATA Statement

Description
The BLOCK DATA statement begins a block data program unit.

Syntax
BLOCK DATA [block-data-name]

Where:
block-data-namés an optional name given to the block data program unit.

Example
block data mydata
common /d/ a, b, ¢
data a/1.0/, b/2.0/, ¢/3.0/
end block data mydata

BREAK Subroutine

Description
Handle break interrupts during execution of the program.

Lahey Fortran 90 Language Reference 75

Chapter 2 Alphabetical Reference

Syntax
BREAK (lvar)

Optional Arguments
Ivar must be of type LOGICAL. It must have the SAVE attribute or be in a common block.

Remarks

If lvar is absent, the program will terminate afteiGarl-Break> or<Ctrl-C> is typed at

the keyboard. Allfile buffers will be flushed, and the program will terminate with an error
status. This is the system default action.

If lvar is present, the program will not terminate afteCal-Break> or<Ctrl-C> , but

Ivar will be assigned the value true. If a break is received during console input/output, some
data may be lost and an error may result. The error may be trapped using the ERR= or
IOSTAT= specifier in the input/output statement.

To ignore break interrupts in the program use the NBREAK subroutineNB&EAK Sub-
routine” beginning on page 177).

Example
call break () ! break interrupt terminates program
call break (lvar) ! break interrupt assigns true to Ivar

BTEST Function

76

Description
Test a bit of an INTEGER data object.

Syntax
BTEST ¢, po9

Arguments
i must be of type INTEGER.

posmust be of type INTEGER. It must be non-negative and less than BIT_i$IZBit6
are numbered from least significant to most significant, beginning with 0.

Result

The result is of type default LOGICAL. It has the value true ipb&has the value 1 and
false if bitposhas the value zero.

Lahey Fortran 90 Language Reference

CALL Statement

Example
| = btest (1, 0) !lis assigned the value true
| = btest (4, 1) !lis assigned the value false
| = btest (32, 5) !lis assigned the value true

CALL Statement

Description
The CALL statement invokes a subroutine and passes to it a list of arguments.

Syntax
CALL subroutine-name([[actual-arg-list])]

Where:
subroutine-nameés the name of a subroutine.

actual-arg-listis [[keyword =] actuatarg] [, ..]

keywordis the name of a dummy argumenstdroutine-name

actual-argis an expression, a variable, a procedure name, altexnate-return-spec.
alternate-return-spec islabel

labelis a statement label.

Remarks

General:

actual-arg-listdefines the correspondence betweerathaal-args supplied and the dummy
arguments of the subroutine.

If keyword =is present, the actual argument is passed to the dummy argument whose name
is the same deeyword If akeyword =is absent, the actual argument is passed to the dummy
argument in the corresponding position in the dummy argument list.

keyword =must appear with actual-argunless no previouseyword =has appeared in the
actual-arg-list.

keyword =can only appear if the interface of the procedure is explicit in the scoping unit.

An actual-argcan be omitted if the corresponding dummy argument has the OPTIONAL
attribute. Eaclactual-argmust be associated with a corresponding dummy argument.

Data objects as arguments:
An actual argument must be of the same kind as the corresponding dummy argument.

If the dummy argument is an assumed-shape array of type default CHARACTER, its length
must agree with that of the corresponding actual argument

Lahey Fortran 90 Language Reference 77

Chapter 2 Alphabetical Reference

78

The total length of a dummy argument of type default CHARACTER must be less than or
equal to that of the corresponding actual argument.

If the dummy argument is a pointer, the actual argument must be a pointer and the types, type
parameters, and ranks must agree. At the invocation of the subroutine, the dummy argument
pointer receives the pointer association status of the actual argument. At the end of the sub-
routine, the actual argument receives the pointer association status of the dummy argument.

If the actual argument has the TARGET attribute, any pointers associated with it remain asso-
ciated with the actual argument. If the dummy argument has the TARGET attribute, any
pointers associated with it become undefined when the subroutine completes.

The ranks of dummy arguments and corresponding actual arguments must agree unless the
actual argument is an element of an array that is not an assumed-shape or pointer array, or a
substring of such an element.

Procedures as arguments:
If a dummy argument is a dummy procedure, the associated actual argument must be the spe-
cific name of an external, module, dummy, or intrinsic procedure.

The intrinsic functions AMAX0, AMAX1, AMINO, AMIN1, CHAR, DMAX1, DMIN1,
FLOAT, ICHAR, IDINT, IFIX, INT, LGE, LGT, LLE, LLT, MAX0, MAX1, MINO, MIN1,
REAL, and SNGL are not permitted as actual arguments.

If a generic intrinsic function name is also a specific name, only the specific procedure is
associated with the dummy argument.

If a dummy procedure has an implicit interface either the name of the dummy argument is
explicitly typed or the procedure is referenced as a function. The dummy procedure must not
be called as a subroutine and the actual argument must be a function or dummy procedure.

If a dummy procedure has an implicit interface and the procedure is called as a subroutine,
the actual argument must be a subroutine or a dummy procedure.

Alternate returns as arguments:

If a dummy argument is an asterisk, the corresponding actual argument mustteenaie-
return-spec Thelabelin thealternate-return-spemust identify an executable construct in
the scoping unit containing the procedure reference.

Lahey Fortran 90 Language Reference

CARG Function

Example
call alpha (x, y)
subroutine alpha (a, b)
impicit none
real, intent(in) :: a

real, intent(out) :: b

end subroutine alpha

CARG Function

Description
Passtemto a procedure as a C data type by value. CARG can only be used as an actual
argument.

Syntax
CARG (tem)

Arguments
itemcan be a named data object of any intrinsic type except COMPLEX and four-byte LOG-
ICAL. Itis the data object for which to return an addrétesnis an INTENT(IN) argument.

Lahey Fortran 90 Language Reference 79

Chapter 2 Alphabetical Reference

Result

The result is the value @etm Its C data type is as follows:

Table 8: CARG result types

Fortran Type Fortran Kind C type
INTEGER 1 signed char
INTEGER 2 signed short int
INTEGER 4 signed long int
REAL 4 double
REAL 8 double
must not be passed by value; if
passed by reference (without
CARG) it is a pointer to a structure
COMPLEX 4 of the form:
struct complex {
float real_part;
float imaginary_part;};
must not be passed by value; if
passed by reference (without
CARG) it is a pointer to a structure
COMPLEX 8 of the form:
struct dp_complex {
double real_part;
double imaginary_part;};
LOGICAL 1 unsigned char
LOGICAL 4 must not be passed by value or by
reference
CHARACTER 1 char *
Example

i =my_c_function(carg(a)) ! a is passed by value

80 Lahey Fortran 90 Language Reference

CASE Construct

CASE Construct

Description
The CASE construct is used to select between blocks of executable code based on the value
of an expression.

Syntax
[construct-name] SELECT CASE ¢ase-expr
CASE (case-selector,[case-selector] ..) [construct-name]
block

[CASE DEFAULT] construct-name]]
block

END SELECT[construct-name]

Where:
construct-namés an optional name for the CASE construct

case-expis a scalar expression of type INTEGER, LOGICAL, or CHARACTER

case-selectois case-value
or : case-value

or case-value

or case-value case-value

case-valués a constant scalar LOGICAL, INTEGER, or CHARACTER expression.

blockis a sequence of zero or more statements or executable constructs.

Remarks

Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). The resulting value is called the case index. If the case index is in the

range specified with a CASE statemergse-selectorthe block following the CASE state-
ment, if any, is executed. Tloase-selectois evaluated as follows:

case-valueneans equal toase-valug
: case-valueneans less than or equaktse-valug
case-value means greater than or equat&se-valugand

case-value case-valuaneans greater than or equal to thedaffe-valugand less than
or equal to the rightase-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches none
of thecase-valus in the case construct. CASE DEFAULT can appear before, among, or
after other CASE statements, or can be omitted.

Lahey Fortran 90 Language Reference 81

Chapter 2 Alphabetical Reference

Eachcase-valuanust be of the same kind as the case construct’s case index.
The ranges ofase-value in a case construct must not overlap.
Only one CASE DEFAULT is allowed in a given case construct.

If the SELECT CASE statement is identified bganstruct-namgthe corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified bycanstruct-namgthe corresponding END SELECT statement
must not be identified by@nstruct-name If a CASE statement is identified bganstruct-
name the corresponding SELECT CASE statement must specify thecsarsieuct-name

Example
select case (i)
case (:-2)
print*, "i is less than or equal to -2"
case (0)
print*, "i is equal to 0"
case (1:97)

print*, "i is in the range 1 to 97, inclusive"
case default

print*, "i is either -1 or greater than 97"
end select

CASE Statement

Description

Execution of a SELECT CASE statement causes the case expression to be evaluated (see
SELECT CASE). The resulting value is called the case index. If the case index is in the
range specified with a CASE statement's case-selector, the block following the CASE state-
ment, if any, is executed. The case-selector is evaluated as follows:

case-valueneans equal toase-valug
: case-valueneans less than or equaktse-valug
case-value means greater than or equat&se-valugand

case-value case-valuaneans greater than or equal to thedafie-valueand less than
or equal to the rightase-value.

The block following a CASE DEFAULT, if any, is executed if the case index matches none
of thecase-valus in the case construct.

82 Lahey Fortran 90 Language Reference

CEILING Function

Syntax
CASE (case-selector,[case-selector] ..) [construct-name]

or
CASE DEFAULT][construct-name]

Where:

case-selectois case-value
or : case-value

or case-value

or case-value case-value

case-values a constant scalar LOGICAL, INTEGER, or CHARACTER expression.
construct-namés an optional name assigned to the construct.

Remarks

Eachcase-valuanust be of the same kind as the case construct's case index.

The ranges ofase-value in a case construct must not overlap.

Only one CASE DEFAULT is allowed in a given case construct.

If a CASE statement is identified bycanstruct-namgthe corresponding SELECT CASE
statement must specify the sacoastruct-name.

Example
select case (i)
case (:-2)
print*, "i is less than or equal to -2"
case (0)
print*, "i is equal to 0"
case (1:97)

print*, "i is in the range 1 to 97, inclusive”
case default

print*, "i is either -1 or greater than 97"
end select

CEILING Function

Description
Smallest INTEGER greater than or equal to a number.

Lahey Fortran 90 Language Reference 83

Chapter 2 Alphabetical Reference

Syntax
CEILING (&, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is an INTEGER whose value is the smallest integer greater than or eqifal to
kind is present, the kind is that specifiedKayd. If kindis absent, the kind is that of the
default REAL type.

Example
i = ceiling (-4.7) !iis assigned the value -4
i = ceiling (4.7) !iis assigned the value 5

CHAR Function

84

Description
Given character in the collating sequence of a given character set.

Syntax
CHAR (j, kind)

Required Arguments
i must be of type INTEGER. It must be positive and not greater than the number of characters
in the collating sequence of the character set specifi&thdy

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is a CHARACTER of length one corresponding tattheharacter of the given
character set. Kindis present, the kind is that specifiedkiyd. If kindis absent, the kind
is that of the default CHARACTER type.

Example
¢ =char(65) ! char is assigned the value ‘A’
' with ASCII the default character type

Lahey Fortran 90 Language Reference

CHARACTER Statement

CHARACTER Statement

Description
The CHARACTER statement declares entities of type CHARACTER.

Syntax

CHARACTER[char-selector] [, attribute-list::] entity [, entity] ...

Where:

char-selectoiis length-selector

or (LEN =type-param KIND = kind-paran)
or (type-param KIND = kind-paramn)

or (KIND = kind-param LEN =type-param)

length-selectors ([LEN =] type-param
or * char-length

char-lengthis (type-paran
or scalar-int-literal-constant

type-paramis specification-expr
or*

specification-exprs a scalar INTEGER expression that can be evaluated on entry to the pro-
gram unit.

kind-paramis a scalar INTEGER expression that can be evaluated at compile time.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg¢, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-namd (array-speg] [* char-length] [initialization-expr]
or function-name (array-speg] [* char-length]

array-speds an array specification

initialization-expris a CHARACTER-valued expression that can be evaluated at compile
time

entity-namds the name of a data object being declared
function-namaes the name of a function being declared
Remarks

If char-lengthis not specified, the length is one.

An asterisk can be used fcinar-lengthonly in the following ways:

Lahey Fortran 90 Language Reference 85

Chapter 2 Alphabetical Reference

86

1. If the entity is a dummy argument. The dummy argument assumes the length of the
associated actual argument.

2. To declare a named constant. The length is that of the constant value.

3. Inan external function, as the length of the function result. In this case, the function
name must be declared in the calling scoping unit with a length other than *, or access
such a definition by host or use association. The length of the result variable is
assumed from this definition.

char-lengthfor CHARACTER-valued statement functions and statement function dummy
arguments must be a constant INTEGER expression.

The optional comma following ¢har-lengthin achar-selectois permitted only if no double
colon appears in the statement.

The value okind must specify a character set that is valid for this compiler.
char-lengthmust not include a kind parameter.

The* char-lengthin entity specifies the length of a single entity and overrides the length
specifiedin char-selector

The same attribute must not appear more than once in a CHARACTER statement.

function-namenust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the ksitibes Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear éntity-namds a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-spec for a function-name that does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spec for a function-name that does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

Lahey Fortran 90 Language Reference

CLOSE Statement

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entity must not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entity in a CHARACTER statement must not have the EXTERNAL or INTRINSIC
attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
An entity must not be given explicitly any attribute more than once in a scoping unit.

If char-lengthis a non-constant expression, the length is declared at the entry of the proce-
dure and is not affected by any redefinition of the variables in the specification expression
during execution of the procedure.

Example
character (len=2) :: x,y,z !Xx,y,z of length 2
character(len=*) :: d !'length of dummy d

I determined when
I procedure invoked

CLOSE Statement

Description
The CLOSE statement terminates the connection of a specified unit to an external file.

Syntax
CLOSE (close-spec-lisy
Where:
close-spec-lisis a comma-separated list@bse-spes.

close-speds [UNIT =] external-file-unit
or IOSTAT =iostat

or ERR =label

or STATUS =status

Lahey Fortran 90 Language Reference 87

Chapter 2 Alphabetical Reference

external-file-unitis the input/output unit number of an external file.

iostatis a scalar default INTEGE®riable. If present, it is assigned the number of the error
message generated at runtime if an error occurs in executing the CLOSE statement and the
program is not terminated; if no error occurs it is assigned the value zero.

labelis the label of a branch target statement to which the program branches if there is an
error in executing the CLOSE statement.

statusis a CHARACTER expression that evaluates to either 'KEEP' or 'DELETE".

Remarks
external-file-unitis required. If UNIT = is omittedgxternal-file-unitmust be the first spec-
ifier in close-spec-list

A specifier must not appear more than once in a CLOSE statement.

STATUS ="'KEEP' must not be specified for a file whose status prior to execution of a
CLOSE statement is SCRATCH. If KEEP is specified for a file that exists, the file continues
to exist after a CLOSE statement. This is the default behavior.

If STATUS ='DELETE!' is specified, the file will not exist after execution of the CLOSE
statement.

Example
close (8, status = 'keep') ! unit 8 closed and kept
close (err = 200, unit = 9) ! unit 9 closed; if error
! occurs, branch to label
1200

CMPLX Function

88

Description
Convert to type COMPLEX.

Syntax
CMPLX (%, y, kind)

Required Arguments
x must be of type REAL, INTEGER, or COMPLEX.

Optional Arguments
y must be of type REAL or INTEGER. Xfis of type COMPLEXy must not be present.

kind must be a scalar INTEGER expression that can be evaluated at compile time.

Lahey Fortran 90 Language Reference

COMMON Statement

Result

The result is of type COMPLEX. Kindis present the result is of kitkéhd; otherwise, it is

of default kind. The value of the result is the complex number whose real part has the value
of x, if xis an INTEGER or a REAL; whose real part has the value of the real paif &f

is of type COMPLEX; and whose imaginary part has the valyeibpresent, and zero
otherwise.

Example
y =cmplx (3.2, 4.7) !y is assigned (3.2, 4.7)
z =cmplx (3.2) !z is assigned (3.2, 0.0)

COMMON Statement

Description

The COMMON statement provides a global data facility. It specifies blocks of physical stor-
age, called common blocks, that can be accessed by any scoping unit in an executable
program.

Syntax
COMMON [/[common-name]] common-object-list []] /[common-name]
common-object-list] ...

Where:
common-names the name of a common block being declared.

common-object-lisis a comma-separated list of data objects that are declared to be in the
common block.

Remarks

If common-nameés present, all data objects in the correspondamgmon-object-lisare
specified to be in the named common block nacoedmon-namelf common-names omit-
ted, all data objects in the firstmmon-object-lisare specified to be in blank common.

For each common block, a storage sequence is formed of storage sequences of all data objects
in the common block, in the order they appearammon-object-listin the scoping unit. If

any storage sequence is associated by equivalence association with the storage sequence of
the common block, the sequence can be extended only by adding storage units beyond the
last storage unit.

Within an executable program, the storage sequences of all common blocks with the same
name (or all blank commons) have the same first storage unit. This results in the association
of objects in different scoping units.

A blank common has the same properties as a named common, except:

Lahey Fortran 90 Language Reference 89

Chapter 2 Alphabetical Reference

90

1. Execution of a RETURN or END statement can cause data objects in a named com-
mon to become undefined unless the common block name has been declared in a
SAVE statement.

2. Named common blocks of the same name must be the same size in all scoping units
of a program in which they appear, but blank commons can be of different sizes.

3. A data object in a named common can be initially defined in a DATA or type decla-
ration statement in a block data program unit, but data objects in a blank common
must not be initially defined.

A common block name or blank common can appear multiple times in one or more COM-
MON statements in a scoping unit. In such case;dh@mon-object-lisis treated as a
continuation of theommon-object-lisfor that common block.

A given data object can appear only once itathmon-object-listin a scoping unit.

A data object in @ommon-object-lisimust not be a dummy argument, an allocatable array,
an automatic object, a function name, an entry name, or a result name.

Each bound in an array-valued data objecténrmmon-object-listnust be a constant spec-
ification expression.

If a data object in aommon-object-lisis of a derived type, the derived type must have the
sequence attribute.

A pointer must only become associated with pointers of the same type, kind, length, and rank.

Default-type, non-pointer data objects must only become associated with default-type, non-
pointer data objects.

Non-default-type, non-pointer intrinsic data objects must only become associated with non-
default-type, non-pointer intrinsic data objects.

Default CHARACTER data objects must not become associated with default REAL, DOU-
BLE PRECISION, INTEGER, COMPLEX, DOUBLE COMPLEX, or LOGICAL data
objects.

Derived type data objects in which all components are of default numeric or LOGICAL types
can become associated with data objects of default numeric or LOGICAL types.

Derived type data objects in which all components are of default CHARACTER type can
become associated with data objects of type CHARACTER.

An EQUIVALENCE statement must not cause the storage sequences of two different com-
mon blocks to become associated.

An EQUIVALENCE statement must not cause storage units to be added before the first stor-
age unit of the common block.

Lahey Fortran 90 Language Reference

COMPLEX Statement

Example
common /first/ a,b,c l'a, b, and c are in named
I common first
common d,e,f, /second/, g !d, e, and f are in blank
I common, g is in named
I common second
common /first/ h I'his also in first

COMPLEX Statement

Description
The COMPLEX statement declares entities of type COMPLEX.

Syntax

COMPLEX|[kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selectoiis ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expris a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-namd (array-spec)] [= initialization-expr]
or function-name [array-spec |

array-speds an array specification.

initialization-expris an expression that can be evaluated at compile time.
entity-namds the name of a data object being declared.

function-namas the name of a function being declared.

Remarks

The same attribute must not appear more than once in a COMPLEX statement.

function-nameanust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

= initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the ksitities Each
entity has the SAVE attribute, unless it is in a named common block.

Lahey Fortran 90 Language Reference 91

Chapter 2 Alphabetical Reference

92

= initialization-exprmust not appear éntity-nameas a dummy argument, a function result,

an object in a named common block unless the type declaration is in a block data program
unit, an object in blank common, an allocatable array, a pointer, an external name, an intrin-
sic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spedor afunction-namehat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entitymust not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a COMPLEX statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entitymust not be given explicitly any attribute more than once in a scoping unit.

Example
complex ::a, b,c !a, b, and c are of type complex
complex, dimension (2, 4) :: d
Idis a2 by 4 array of complex
complex :: e = (2.0, 3.14159)
I complex e is initialized

Lahey Fortran 90 Language Reference

Computed GOTO Statement

Computed GOTO Statement

Description

The computed GOTO statement causes transfer of control to one of a list of labeled
statements.

Syntax
GO TO (labels) [,] scalar-int-expr

Where:
labelsis a comma-separated list of labels.

scalar-int-expris a scalar INTEGER expression.

Remarks

Execution of a computed GOTO statement causes evaluasoalaf-int-expr If this value

isi suchthatl<i<n ,wheneis the number of labels labels a transfer of control occurs

so that the next statement executed is the one identified i thbel inlabels Ifi is less

than 1 or greater tham the execution sequence continues as though a CONTINUE statement
were executed.

Each label inabelsmust be the label of a branch target statement in the current scoping unit.
Example
goto (10,20,30) i
10 a=a+l !ifi=1 control transfers here

20 a=a+l !ifi=2 control transfers here
30 a=a+l !ifi=3 control transfers here

CONJG Function

Description
Conjugate of a complex number.

Syntax
CONJG §)

Arguments
zmust be of type COMPLEX.

Lahey Fortran 90 Language Reference 93

Chapter 2 Alphabetical Reference

Result

The result is of type COMPLEX and of the same kind. al¢s value is the same as thatzof
with the imaginary part negated.

Example
X = conjg (2.1, -3.2) ! xis assigned
! the value (2.1, 3.2)

CONTAINS Statement

Description

The CONTAINS statement separates the body of a main program, module, or subprogram
from any internal or module subprograms it contains.

Syntax
CONTAINS

Remarks
The CONTAINS statement is not executable.

Internal procedures cannot contain other internal procedures.

Example
subroutine outside (a)
implicit none
real, intent(in) :: a
integer :: i, j
real :: X

call inside (i)
X = sin (3.89) I not the intrinsic sin()

contains

subroutine inside (k) ! not available outside outside()
implicit none
integer, intent(in) :: k

end subroutine inside

94 Lahey Fortran 90 Language Reference

CONTINUE Statement

function sin (m) ! not available outside outside()
implicit none
real :: sin
real, intent(in) :: m

end function sin

end subroutine outside

CONTINUE Statement

Description
Execution of a CONTINUE statement has no effect.

Syntax
CONTINUE

Example
do 10i=1,100

10 continue

COS Function

Description
Cosine.

Syntax
COS &)

Arguments
x must be of type REAL or COMPLEX.

Result
The result is of the same type and kincka#ts value is a REAL or COMPLEX representa-

tion of the cosine of.

Example
r =cos(.5) !ris assigned the value 0.877583

Lahey Fortran 90 Language Reference 95

Chapter 2 Alphabetical Reference

COSH Function

Description
Hyperbolic cosine.

Syntax
COSH §)

Arguments
x must be of type REAL.

Result
The result is of the same type and kinc.als value is a REAL representation of the hyper-
bolic cosine ok.

Example
r = cosh(.5) !ris assigned the value 1.12763

COUNT Function

96

Description
Count the number of true elements in a mask along a given dimension.

Syntax
COUNT (mask dim)

Required Arguments
maskmust be of type LOGICAL. It must not be scalar.

Optional Arguments

dim must be a scalar of type INTEGER with a value within the rdngelim< n , Wwhere
is the rank ofmask The corresponding actual argument must not be an optional dummy
argument.

Result
The result is of type default INTEGER. Its value and rank are computed as follows:

1. If dimis absent omaskhas rank one, the result is scalar. The result is the number
of elements for whiclmaskis true.

Lahey Fortran 90 Language Reference

CPU_TIME Subroutine

2. Ifdimis present omaskhas rank two or greater, the result is an array ofmahknd
of shape (dy, d,, ..., dgim—1, Agim+ 1, ---» d,) wherg(d,, d,, ..., d,) s the shape
of maskandn is the rank ofnask The result is the number of true elements for each
corresponding vector imask

Example
integer, dimension (2,3) :: a, b
integer, dimension (2) :: ¢
integer, dimension (3) :: d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 35|
|2 4 6]
b = reshape((/1,2,3,5,6,4/), (/2,3/))
I represents |1 3 6|
|25 4]
e = count(a==b) !e is assigned the value 3
d = count(a==b, 1)! d is assigned the value 2,1,0

¢ = count(a==b, 2)! c is assigned the value 2,1

CPU_TIME Subroutine

Description

Processor Time.

Syntax
CPU_TIME time)

Required Arguments

timemust be a scalar REAL. Itis an INTENT (OUT) argument that is assigned the processor
time in seconds. Note that CPU_TIME only reflects the actual CPU time when the applica-
tion is compiled for Windows and run on NT or when the application is compiled for
extended DOS and run from DOS (not from a DOS box of Windows). Otherwise,
CPU_TIME behaves like SYSTEM_CLOCK.

Lahey Fortran 90 Language Reference 97

Chapter 2 Alphabetical Reference

Example
call cpu_time(start_time)
X = c0s(2.0)
call cpu_time(end_time)
cos_time = end_time - start_time

I time to calculate and store the cosine of 2.0

CSHIFT Function

Description

Circular shift of all rank one sections in an array. Elements shifted out at one end are shifted
in at the other. Different sections can be shifted by different amounts and in different direc-
tions by using an array-valued shift.

Syntax
CSHIFT f@rray, shift, dim)

Required Arguments
array can be of any type. It must not be scalar.
shift must be of type INTEGER and must be scalaridly is of rank one; otherwise it must

be scalar or of rank-1 and of shape(d,, d, ..., dgim_1 Agim+ 1+ ---» d) , where
(dq, dy, ..., d,) isthe shape drray.

Optional Arguments

dim must be a scalar INTEGER with a value in the rahgedim< n , Whisréhe rank
of array. If dimis omitted, it is as if it were present with the value one.

Result

The result is of the same type, kind, and shape as array.

If array is of rank one, the value of the result is the valweri@y circularly shiftedshift ele-
ments. Ashift of n performed orarray gives a result value @frray(1 + MODULO(+ n -
1, SIZEgrray))) for elemeni.

If array is of rank two or greater, each complete vector along dimedsiois circularly
shiftedshift elements.shift can be array-valued.

98 Lahey Fortran 90 Language Reference

CYCLE Statement

Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: ¢, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |1 35|

|2 46|

c=(/1,2,3/)

b = cshift(a,1) !bis assigned the value |2 4 6|
! |1 35|

b = cshift(a,-1,2)! b is assigned the value |3 5 1|
! |46 2|

b = cshift(a,c,1) ! b is assigned the value |2 3 5]
! |14 6|

d = cshift(c,2) !cis assigned the value |31 2|

CYCLE Statement

Description
The CYCLE statement curtails the execution of a single iteration of a DO loop.

Syntax
CYCLE [do-construct-name]

Where:

do-construct-names the name of a DO construct that contains the CYCLE statemelat: If
construct-namés omitted, it is as iflo-construct-namevere the name of the innermost DO
construct in which the CYCLE statement appeatrs.

Example
outer: do i=1, 10
inner: doj=1, 10
if (i>a) cycle outer
if (j>b) cycle ! cycles to inner

enddo inner
enddo outer

DATA Statement

Description
The DATA statement provides initial values for variables.

Lahey Fortran 90 Language Reference 99

Chapter 2 Alphabetical Reference

100

Syntax
DATA data-stmt-set [|] data-stmt-set] ...

Where:
data-stmt-seis object-list/ value-list/

object-listis a comma-separated list of variable naoremplied-dcs.
value-listis a comma-separated listjofpeat*] data-constant
repeatis a scalar INTEGER constant.

data-constants a scalar constant (either literal or named)
or a structure constructor.

implied-dois (implied-do-object-list implied-do-var= expr, expr[, expr])

implied-do-object-lists a comma-separated list of array elements, scalar structure compo-
nents, oimplied-dc.

implied-do-varis a scalar INTEGER variable.

expris a scalar INTEGER expression.

Remarks

object-listis expanded to form a sequence of scalar variables. An array whose unqualified
name appears in abject-listis equivalent to a complete sequence of its array elements in
array element order. An array section is equivalent to the sequence of its array elements in
array element order. Amplied-dois expanded to form a sequence of array elements and
structure components, under the control ofitiyglied-do-var as in the DO construct.

value-listis expanded to form a sequence of scalar constant values. Each such value must be
a constant that is either previously defined or made accessible by a use association or host
associationrepeatindicates the number of times the following constant is to be included in
the sequence; omissionrafpeathas the effect of a repeat factor of 1.

The expanded sequences of scalar variables and constant values are in one-to-one correspon-
dence. Each constant specifies the initial value for the corresponding variable. The lengths
of the two expanded sequences must be the same.

A variable, or part of a variable, must not be initialized more than once in an executable
program.

A variable whose name is included in@hject-listmust not be: a dummy argument made
accessible by use association or host association; in a named common block unless the
DATA statement is in a block data program unit; in a blank common block; a function name;
a function result name; an automatic object; a pointer; or an allocatable array.

In an array element or a scalar structure component that idgrimpéiad-do-object-listany
subscript must be an expression whose primaries are either consianieat-do-vas of
the containingmplied-dcs, and each operation must be intrinsic.

Lahey Fortran 90 Language Reference

DATE_AND_TIME Subroutine

exprmust involve as primaries only constantsnoplied-do-vas of the containingmplied-
dos, and each operation must be intrinsic.

The value of the constant must be compatible with its corresponding variable according to
the rules of intrinsic assignment, and the variable becomes initially defined with the value of
the constant in accordance with the rules of intrinsic assignment.

Example

real :: a

integer, dimension (-3:3) :: smallarray

integer, dimension (10000) :: bigarray

data a /3.78/, smallarray /7 * 1/
I assigns 3.78 to a and 1 to each
I element of smallarray

data (bigarray(i), i=1,10000,2) /5000*6/
I assigns 6 to each element that
I has an odd subscript value

DATE_AND_TIME Subroutine

Description
Date and real-time clock data.

Syntax
DATE_AND_TIME (date time, zone valueg

Optional Arguments

datemust be scalar and of type default CHARACTER, and must be of length at least eight
in order to contain the complete value. Itis an INTENT (OUT) argument. lIts leftmost eight
characters are set to a value of the foagymmdgdwhereccis the centuryyythe year within

the centurymmthe month within the year, amidi the day within the month. If there is no
date available, they are set to blank.

timemust be scalar and of type default CHARACTER, and must be of length at least ten in
order to contain the complete value. Itis an INTENT (OUT) argument. Its leftmost ten char-
acters are set to a value of the fdthmmss.sssvherehhis the hour of the daypamis the
minutes of the hour, argb.ssss the seconds and milliseconds of the minute. If there is no
clock available, they are set to blank.

zonemust be scalar and of type default CHARACTER, and must be of length at least five in
order to contain the complete value. Itis an INTENT (OUT) argument. Its leftmost five
characters are set to a value of the forim#mm wherehh andmmare the time difference

with respect to Coordinated Universal Time (UTC, also known as Greenwich Mean Time) in

Lahey Fortran 90 Language Reference 101

Chapter 2 Alphabetical Reference

102

hours and parts of an hour expressed in minutes, respectively. If there is no clock available,
they are set to blank. To use the zone argument, you must first set the environment variable
TZ as follows:

set Tz =z7Z[+-]d[d][LLL]

whereZZZis a three-character string representing the name of the current tim¢+Zene;

]d[d] is a required field containing an optionally signed number with one or two digits rep-
resenting the local time zone’s difference from UTC in hours (negative numbers adjust
eastward from UTC); anfdlLL] is an optional three-character field that represents the local
time zone’s daylight savings time. [IfLL] is present then 1 is added tg-]d[d] . ZZZand

LLL (if present) must be uppercase. For example, "TZ=PST-8PDT" would be used on the
west coast of the United States during the portion of the year when daylight savings is in
effect, and "TZ=PST-8" during the rest of the year. If the TZ environment variable is not set
or is set using an invalid format then zone will be set to blanks.

valuesmust be of type default INTEGER and of rank one. Itisan INTENT (OUT) argument.
Its size must be at least eight. The values returned in VALUES are as follows:

values(1) the year (for example, 1990),-tuge(0) if there is no date available.
values(2) the month of the year, duge(0) if there is no date available.
values(3) the day of the month, etuge(0) if there is no date available.

values(4) the time difference with respect to Coordinated Universal Time (UTC) in minutes,
or -huge(0) if this information is not available.

values(5) the hour of the day, in the range of 0 to 23hoge(0) if there is no clock.
values(6) the minutes of the hour, in the range of 0 to 5%haye(0) if there is no clock.
values(7) the seconds of the minute, in the range 0 to 6Guge(0) if there is no clock.

values(8) the milliseconds of the second, in the range 0 to 998ugs(0) if there is no
clock.

Example
I called in Incline Village, NV on February 3, 1993
lat10:41:04.1
integer :: dt(8)
character (len=10) :: time, date, zone
call date_and_time (date, time, zone, dt)
I date is assigned the value "19930203"
I time is assigned the value "104104.100"
I zone is assigned the value "-800"
I dt is assigned the value: 1993,2,3,
! -480,10,41,4,100.

Lahey Fortran 90 Language Reference

DBLE Function

DBLE Function

Description
Convert to double-precision REAL type.

Syntax
DBLE (a)

Arguments
a must be of type INTEGER, REAL or COMPLEX.

Result

The result is of double-precision REAL type. Its value is a double precision representation
ofa. Ifais of type COMPLEX, the result is a double precision representation of the real part
of a.

Example
double precision d
d =dble (1) !dis assigned the value 1.00000000000000

DEALLOCATE Statement

Description
The DEALLOCATE statement deallocates allocatable arrays and pointer targets and disas-
sociates pointers.

Syntax
DEALLOCATE (object-list [STAT =stat-variable])

Where:
object-listis a comma-separated list of pointers or allocatable arrays.

stat-variableis a scalar INTEGER variable.

Remarks

If the optional STAT=is present and the DEALLOCATE statement succstatisjariable
is assigned the value zero. If STAT=is present and the DEALLOCATE statemerstéails,
variableis assigned the number of the error message generated at runtime.

If an error condition occurs during execution of a DEALLOCATE statement that does not
contain the STAT= specifier, the executable program is terminated.

Lahey Fortran 90 Language Reference 103

Chapter 2 Alphabetical Reference

Deallocating an allocatable array that is not currently allocated or a pointer that is disassoci-
ated or whose target was not allocated causes an error condition in the DEALLOCATE
statement.

If a pointer is currently associated with an allocatable array, the pointer must not be
deallocated.

Deallocating an allocatable array or pointer with the TARGET attribute causes the pointer
association status of any pointer associated with it to become undefined.

Example

deallocate (a, b, stat=s) ! causes a and b to be
I deallocated. If success-
!'ful, s is assigned 0

Derived-Type Definition Statement

Description
The derived type definition statement begins a derived type definition.

Syntax
TYPE[[, access-spec]] type-name

Where:
access-speis PUBLIC
or PRIVATE

type-namas the name of the derived type being defined.

Remarks

access-speis permitted only if the derived type definition is within the specification part of
a module.

If a component of a derived type is of a type declared to be private, either the definition must
contain the PRIVATE statement or the derived type must be private.

type-namenust not be the name of an intrinsic type nor of another accessible derived type

name.
Example
type coordinate
real :: x,y
end type

104 Lahey Fortran 90 Language Reference

DIGITS Function

DIGITS Function

Description
Number of significant binary digits.

Syntax
DIGITS (x)

Arguments
x must be of type INTEGER or REAL. It can be scalar or array-valued.

Result
The result is of type default INTEGER. Its value is the number of significant binary digits
in x.
Example
real :: r

integer :: i
i = digits (r) !iis assigned the value 24

DIM Function

Description
The difference between two numbers if the difference is positive; zero otherwise.

Syntax
DIM (X,)

Arguments
x must be of type INTEGER or REAL.
y must be of the same type and kinkas

Result
The result is of the same typexaslts value i< - y if xis greater thay and zero otherwise.

Example

z =dim(1.1, 0.8) ! z is assigned the value 0.3
z=dim(0.8, 1.1) ! z is assigned the value 0.0

Lahey Fortran 90 Language Reference 105

Chapter 2 Alphabetical Reference

DIMENSION Statement

Description
The DIMENSION statement specifies the shape of an array.

Syntax
DIMENSION | ::] array-name(array-speg [, array-name(array-speg | ...

Where:
array-nameis the name of an array.

array-speds explicit-shape-specs
or assumed-shape-specs

or deferred-shape-specs

or assumed-size-spec

explicit-shape-speds a comma-separated lisflmwer-bound:] upper-boundhat specifies
the shape and bounds of an explicit-shape array.

assumed-shape-spdssa comma-separated list[lfwer-bound]: that, with the dimensions
of the corresponding actual argument, specifies the shape and bounds of an assumed-shape
array.

deferred-shape-spetsa comma-separated list of colons that specifies the rank of a
deferred-shape array.

assumed-size-spéx| explicit-shape-spec$ [lower-bound:] *

assumed-size-spspecifies the shape of a dummy argument array whose size is assumed
from the corresponding actual argument array.

lower-bounds a scalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the lower bound of a given dimension of the array.

upper-bounds a scalar INTEGER expression that can be evaluated on entry to the program
unit that specifies the upper bound of a given dimension of the array.

Example

dimension a(3,2,1) ! a is a 3x2x1 array

dimension b(-3:3) ! b is a 7-element vector with a
! lower bound of -3

dimension c(:,:,:) ! ¢ is an assumed-shape or
I deferred-shape array of
I'rank 3

dimension d(*) !dis an assumed-size array

106 Lahey Fortran 90 Language Reference

DLL_EXPORT Statement

DLL_EXPORT Statement

Description

The DLL_EXPORT statement specifies which procedures should be available in a dynamic-
link library.

Syntax
DLLEXPORT dll-export-names

Where:

dll-export-namess a list of procedures defined in the current scoping unit.

Remarks
The procedures idll-export-namesnust not be module procedures.

Example

function half(x)
implicit none
integer :: half
dll_export half
half = x/2
return

end function half

DLL _IMPORT Statement

Description

The DLL_IMPORT statement specifies which procedures are to be imported from a
dynamic-link library.

Syntax
DLL_IMPORT dll-import-names
Where:

dil-import-namesds a comma-separated list of procedure names.

Lahey Fortran 90 Language Reference 107

Chapter 2 Alphabetical Reference

Example

program main
implicit none
integer :: foo, i
dll_import foo
i = half(i)
stop

end program main

DO Construct

Description

The DO construct specifies the repeated execution (loop) of a sequence of statements or exe-
cutable constructs.

Syntax
do-statement
block
do-termination

Where:
do-statemenis a DO statement

blockis a sequence of zero or more statements or executable constructs.

do-terminationis END DO[construct-name]
or label action-stmt

action-stmtstatement is an action statement other than a GOTO, RETURN, STOP, EXIT,
CYCLE, assigned GOTO, arithmetic IF, or END statement.

Remarks

If a construct name is specified in the DO statement, the same construct name must be spec-
ified in a corresponding END DO statement.

Ending a DO construct with a labeled action statement is obsolescent.

Example
do i=1,100 | iterates 100 times
do while (a>b) !iterates while a>b
do 10j=1,100,3 ! iterates 33 times

10 continue

end do
end do

108 Lahey Fortran 90 Language Reference

DO Statement

The CYCLE statement can be used to curtail execution of the current iteration of a DO loop.
The EXIT statement can be used to exit a DO loop altogether.

DO Statement

Description

The DO statement begins a DO construct. The DO construct specifies the repeated execution
(loop) of a sequence of executable statements or constructs.

Syntax
[construct-name] DO [label] [loop-control]

Where:
construct-namés an optional name given to the DO construct.

labelis the optional label of a statement that terminates the DO construct.

loop-controlis [,] do-variable= expr, expr [, expr]
or[,] WHILE (while-exp)

do-variableis a scalar variable of type INTEGER, default REAL, or default double-precision
REAL.

expris a scalar expression of type INTEGER, default REAL, or default double-precision
REAL. The firstexpris the initial value oflo-variable the seconéxpris the final value of
do-variable the thirdexpris the increment value faio-variable

while-expris a scalar LOGICAL expression.

Remarks

When a DO statement is executed, a DO construct becomes active. The exprekgipns in
control are evaluated, and,db-variableis present, it is assigned an initial value and an iter-
ation count is established for the construct based on the expressions. An iteration count of
zero is possible. Note that because the iteration count is established before execution of the
loop, changing theo-variablewithin the range of the loop has no effect on the number of
iterations. Ifloop-controlis WHILE (while-exp), while-expris evaluated and if false, the

loop terminates and the DO construct becomes inactive. If therddemaontrolit is as if

the iteration count were effectively infinite.

Use of default or double-precision REAL for tthe-variableis obsolescent.

Lahey Fortran 90 Language Reference 109

Chapter 2

Alphabetical Reference

Example
do i=1,100 | iterates 100 times
do while (a>b) ! iterates while a>b
do 10j=1,100,3 ! iterates 33 times each time
I this do construct is entered

10 continue
end do
end do

DOT_PRODUCT Function

Description
Dot-product multiplication of vectors.

Syntax
DOT-PRODUCT yector_avector_h

Arguments

vector_amust be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-
valued and of rank one.

vector_bmust be of numeric type Vector_ais of numeric type and of type LOGICAL if
vector_ais of type LOGICAL. It must be array-valued, of rank one, and of the same size as
vector_a

Result

If the arguments are of type LOGICAL, then the result is scalar and of type default LOGI-
CAL. Its value is ANY yector_a. AND. vector_B. If the vectors have size zero, the result
has the value false.

If the arguments are of different numeric type, then the result type is that of the argument with
the higher type, where COMPLEX is higher than REAL, and REAL is higher than INTE-
GER. If both arguments are of the same type, the result kind is the kind of the argument that
offers the greater range. The result value is SUdtor_a* vector I if vector_ais of type

REAL or INTEGER. The result value is SUM (CONXg&¢tor_g * vector b if vector_a

is of type COMPLEX.

Example
i = dot_product((/3,4,5/),(/6,7,8/))
l'iis assigned the value 86

110 Lahey Fortran 90 Language Reference

DOUBLE PRECISION Statement

DOUBLE PRECISION Statement

Description
The DOUBLE PRECISION statement declares entities of type double precision REAL.

Syntax
DOUBLE PRECISION], attribute-list] ::] entity [, entity] ...

Where:

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-nam¢ (array-speg] [= initialization-expr]
or function-name (array-speg]

array-speds an array specification.

initialization-expris an expression that can be evaluated at compile time.

entity-namds the name of a data object being declared.

function-namas the name of a function being declared.

Remarks

The same attribute must not appear more than once in a DOUBLE PRECISION statement.

function-nameanust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the kstties Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear gntity-names a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

Lahey Fortran 90 Language Reference 111

Chapter 2 Alphabetical Reference

An array-spedor afunction-namehat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a DOUBLE PRECISION statement must not have the EXTERNAL or INTRIN-
SIC attribute specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example

double precision a, b, c ! a, b, and c are of type
I double precision

double precision, dimension (2, 4) :: d
Idisa?2by4array
! of double precision

double precision :: e = 2.0d0
I e is initialized

DPROD Function

112

Description
Double-precision REAL product.

Lahey Fortran 90 Language Reference

DVCHK Subroutine

Syntax
DPROD ,)

Arguments
x must be of type default REAL.

y must be of type default REAL.

Result

The result is of type double-precision REAL. Its value is a double-precision representation
of the product ok andy.

Example
dub = dprod (3.2, 4.4e4) ! dub is assigned 13.2d6

DVCHK Subroutine

Description

The initial invocation of the DVCHK subroutine masks the divide-by-zero interrupt on the
floating-point unit.Iflag must be set to true on the first invocation. Subsequent envocations
return true or false in théag variable if the exception has occurred or not occurred, respec-
tively. DVCHK will not check or mask zero divided by zero. Use INVALOP to check for a
zero divided by zero.

Syntax
DVCHK (Iflag)

Arguments
Iflag must be of type LOGICAL. Itis assigned the value true if a divide-by-zero exception

has occurred, and false otherwise.

Example
call dvchk (Iflag) ! mask the divide-by-zero interrupt

ELSE IF Statement

Description

The ELSE IF statement controls conditional execution of a block of code in an |IF construct
where all previous IF expressions are false.

Lahey Fortran 90 Language Reference 113

Chapter 2 Alphabetical Reference

Syntax
ELSE IF expr) THEN [construct-name]

Where:
expris a scalar LOGICAL expression.

construct-namés the optional name given to the IF construct.

Example
if (i>-1) then
print*, b
else if (i<j) then ! executed only if true and previous
I if expression was false
print*, ¢
end if

ELSE Statement

Description
The ELSE statement controls precedes a block of code to be executed in an IF construct

where all previous IF expressions are false.

Syntax
ELSE[construct-name]

Where:
construct-namés the optional name given to the IF construct.

Example

if (i>]) then
print*, a

else if (i<j) then
print*, b

else !executed if previous if expressions were false
print*, ¢

end if

ELSEWHERE Statement

Description
The ELSEWHERE statement controls conditional execution of a block of assignment state-
ments for elements of an array for which the WHERE construct’'s mask expression is false.

114 Lahey Fortran 90 Language Reference

END Statement

Syntax
ELSEWHERE

Remarks

In each assignment statement the mask expression and the variable on the left side of the
assignment statement must be of the same shape.

The assignment statement must not be a defined assignment

Example
where (b>c) ! begin where construct
b=-1
elsewhere
b=1
end where

END Statement

Description
The END statement ends a program unit, module subprogram, or internal subprogram.

Syntax
END [class [name]]

Where:
classis either PROGRAM, FUNCTION, SUBROUTINE, MODULE, INTERFACE or
BLOCK DATA.

nameis the name of the program unit, module subprogram, or internal subprogram.

Remarks

Each program unit, module subprogram, or internal subprogram must have exactly one END
statement.

The END PROGRAM, END FUNCTION, and END SUBROUTINE statements are execut-
able and can be branch target statements. The END MODULE, END INTERFACE, and
END BLOCK DATA statements are non-executable.

Executing an END FUNCTION or END SUBROUTINE statement is equivalent to executing
a return statement in a subprogram.

Executing an END PROGRAM statement terminates the executing program.

Lahey Fortran 90 Language Reference 115

Chapter 2 Alphabetical Reference

namecan be used only if a name was given to the program unit, module subprogram, or inter-
nal subprogram in a PROGRAM, FUNCTION, SUBROUTINE, MODULE, or BLOCK
DATA statement.namecannot be used with an END INTERFACE statement.

If nameis present, it must be identical to theanmespecified in the PROGRAM, FUNCTION,
SUBROUTINE, MODULE, or BLOCK DATA statement.

Example
program names
call joe
call bill
call fred
end program names ! program and names are optional

subroutine joe
end subroutine joe ! ok end statement

subroutine bill
end subroutine ! also ok end statement

subroutine fred
end I also ok end statement

END DO Statement

Description
The END DO statement ends a DO construct.

Syntax
END DO [construct-name]

Where:
construct-nameés the name of the DO construct.

Remarks

If the DO statement of the DO construct is identified bgm@struct-namgthe corresponding
END DO statement must specify the sarnastruct-name If the DO statement is not iden-
tified by aconstruct-namgthe END DO statement must not specifyoastruct-name

If the DO statement specifies a label, the corresponding END DO statement must be identi-
fied with the same label.

116 Lahey Fortran 90 Language Reference

ENDFILE Statement

Example
named: do i=1,10
labeled: do 10j=1,10
do k=1,10
end do
10 end do labeled
end do named

ENDFILE Statement

Description
The ENDFILE statement writes an endfile record as the next record of the file. The file is
then positioned after the endfile record, which becomes the last record of the file.

Syntax
ENDFILE unit-number

or
ENDFILE (position-spec-ligt

Where:
unit-numberis a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-lists [UNIT =] unit-number][, ERR =label][, IOSTAT =stat Jwhere
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, theanumber
must be first.

labelis a statement label that is branched to if an error condition occurs during execution of
the statement.

statis a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero other-
wise. Ifstatis present and error, end-of-file, or end-of-record condition occurs, execution is
not terminated.

Remarks
After execution of an ENDFILE statement, a BACKSPACE or REWIND statement must be
executed to reposition the file before any data transfer statement or subsequent ENDFILE
statement.

An ENDFILE statement on a file that is connected but does not yet exist causes the file to be
created before writing the endfile record.

Lahey Fortran 90 Language Reference 117

Chapter 2 Alphabetical Reference

Example
endfile 8 ! writes an endfile record to the file
I connected to unit 8

END IF Statement

Description
The END IF statement ends an |IF construct.

Syntax
END IF [construct-name]

Where:
construct-namés the name of the IF construct.

Remarks

If the IF statement of the IF construct is identified lpoastruct-namgthe corresponding
END IF statement must specify the sarnastruct-namelf the IF statement is not identified
by aconstruct-namgthe END IF statement must not spea@bnstruct-name

Example
if (a.gt.b) then
c=1
d=2
end if

END SELECT Statement

Description
The END SELECT statement ends a CASE construct.

Syntax
END SELECT] construct-name]

Where:
construct-nameés the name of the CASE construct.

118 Lahey Fortran 90 Language Reference

END WHERE Statement

Remarks

If the SELECT CASE statement of the CASE construct is identifiedcbystruct-namgthe
corresponding END SELECT statement must specify the samstruct-name If the
SELECT CASE statement is not identified byaamstruct-namgthe END SELECT state-
ment must not specifyonstruct-name

Example

select case (i)
case (:-1)

print*, "negative”
case (0)

print*, "zero"
case (1:)

print*, "positive"
end select

END WHERE Statement

Description
The END WHERE statement ends a WHERE construct.

Syntax
END WHERE

Example
where (c >d) ! cand d are arrays
c=1
d=2
end where

ENTRY Statement

Description
The ENTRY statement permits one program unit to define multiple procedures, each with a
different entry point.

Syntax
ENTRY entry-name ([dummy-arg-list]) [RESULT ¢esult-namg]

Where:
entry-namds the name of the entry.

Lahey Fortran 90 Language Reference 119

Chapter 2 Alphabetical Reference

dummy-arg-lisis a comma-separated list of dummy arguments or * alternate return
indicators.

result-namas the name of the result.

Remarks

An ENTRY statement can appear only in an external subprogram or module subprogram. An
ENTRY statement must not appear within an executable construct.

ENTRY statement in a function

If the ENTRY statement is contained in a function subprogram, an additional function is
defined by that subprogram. The name of the functienti/-nameand its result variable

is result-nameor isentry-namef no result-names provided. The characteristics of the func-
tion result are specified by specifications of the result variable.

If RESULT is specifiedentry-namemust not appear in any specification statement in the
scoping unit of the function program.

RESULT can be present only if the ENTRY statement is contained in a function subprogram.
If RESULT is specifiedresult-namemust not be the same asstry-name

ENTRY statement in a subroutine

A dummy argument can be an alternate return indicator only if the ENTRY statement is con-
tained in a subroutine subprogram.

If the ENTRY statement is contained in a subroutine subprogram, an additional subroutine is
defined by that subprogram. The name of the subroutemtig-name The dummy argu-
ments of the subroutine are those specified on the ENTRY statement.

Example
program main
i=2
call square(i)
j=2
call quad(j)
print*, i,j ! prints 4 16
end program main
subroutine quad(k)
k=k*k
entry square(k)
k=k*k
return
end subroutine quad

120 Lahey Fortran 90 Language Reference

EOSHIFT Function

EOSHIFT Function

Description

End-off shift of all rank one sections in an array. Elements are shifted out at one end and
copies of boundary values are shifted in at the other. Different sections can be shifted by dif-
ferent amounts and in different directions by using an array-valued shift.

Syntax
EOSHIFT @rray, shift, boundary dim)

Required Arguments
array can be of any type. It must not be scalar.

shift must be of type INTEGER and must be scalarridy is of rank one; otherwise it must
be scalar or of rank-1 and of shape(d, ds, ..., dgim_1 A4im+ 1- ---» dy) , where
(dy, dy, ..., d,) is the shape afrray.

Optional Arguments

boundarymust be of the same type and kincaasy. If array is of type CHARACTER
boundarymust have the same lengthasmy. It must be scalar #rray is of rank one; oth-
erwise it must be scalar or of ranklL and of shape(d,, d,, ..., dgim—_1, gim+ 1> ---» dn) -
boundarycan be omitted, in which case the default values are zero for numeric types, blanks
for CHARACTER, and false for LOGICAL.

dim must be a scalar INTEGER with a value in the rahgedim< n , Whisréhe rank
of array. If dimis omitted, it is as if it were present with a value of one.

Result
The result is of the same type, kind and shaperay.

Element(s;, s,, ..., s,) of the result has the value
array (Si, Sy -5 Sqim-1+ Sdim + Sh Sgim+ 1+ ---» S) Whereshis shiftor
shift (Sy, S --+» Sgim—1 Sdim+ 1» ---» Sp) Provided the inequality
Ibound array din < sy;,,+sh<ubound array dim holds and is otherwiggoundaryor
boundary (S;, S, -+, Sgim—1> Sdim+ 1+ -++» Sn) -

Lahey Fortran 90 Language Reference 121

Chapter 2 Alphabetical Reference

Example
integer, dimension (2,3) :: a, b
integer, dimension (3) :: ¢, d
integer :: e
a = reshape((/1,2,3,4,5,6/), (/2,3/))
I represents |13 5]

[2 4 6]

c=(/1,2,3/)

b = eoshift(a,1) !b is assigned the value |0 0 O|
! [135

b = eoshift(a,-1,0,2) ! b assigned the value |3 5 0]
! |4 60|

b = eoshift(a,-c,1)! b is assigned the value |2 1 1]
! [111]

d = eoshift(c,2) !cis assigned the value |3 0 0|

EPSILON Function

Description
Positive value that is almost negligible compared to unity.

Syntax
EPSILON §)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result

The result is a scalar value of the same kinkl dss value is 2°, wherep is the number of
bits in the fraction part of the physical representatiox of

122 Lahey Fortran 90 Language Reference

EQUIVALENCE Statement

Example
I reasonably safe compare of two default REALs
function equals (a, b)
implicit none
logical :: equals
real, intent(in) :: a, b
real :: eps
eps = abs(a) * epsilon(a) ! scale epsilon
if (eps == 0) then
eps = tiny (a) l'if eps underflowed to O
I use a very small
! positive value for epsilon
end if
if (abs(a-b) > eps) then
equals = .false. ! not equal if difference>eps
return
else
equals = .true. I equal otherwise
return
endif
end function equals

EQUIVALENCE Statement

Description

The EQUIVALENCE statement is used to specify that two or more objects in a scoping unit
share the same storage.

Syntax
EQUIVALENCE equivalence-sets

Where:
equivalence-sets a comma-separated list eglivalence-objects

equivalence-objects a comma-separated list of variables, array elements, or substrings.

Remarks

If the equivalenced objects have different types or kinds, the EQUIVALENCE statement
does not cause any type conversion or imply mathematical equivalence.

If a scalar and an array-valued object are equivalenced, the scalar does not have array prop-
erties and the array does not have scalar properties.

Lahey Fortran 90 Language Reference 123

Chapter 2 Alphabetical Reference

An equivalence-objeanust not be a dummy argument, a pointer, an allocatable array, an
object of a non-sequence derived type or of a sequence derived type containing a pointer at
any level of component selection, an automatic object, a function name, an entry name, a
result name, a named constant, a structure component, or a subobject of any of the preceding
objects.

If an equivalence-objeds of a derived type that is not a numeric sequence or CHARACTER
sequence type, all of the objects in the equivalence set must be of the same type.

If an equivalence-objeds of an intrinsic type other than default INTEGER, default REAL,
double precision REAL, default COMPLEX, default LOGICAL, or default CHARACTER,
all of the objects irquivalence-sanust be of the same type with the same kind value.

A data object of type default CHARACTER can be equivalenced only with other objects of
type default CHARACTER. The lengths of the equivalenced objects are not required to be
the same.

An EQUIVALENCE statement must not specify that the same storage unit is to occur more
than once in a storage sequence.

Example
equivalence (a,b,c(2)) ! a, b, and ¢c(2) share the
| same storage

ERROR Subroutine

Description
Print a message to the console, then continue processing.

Syntax
ERROR (nessage

Arguments

messagenust be of type CHARACTER. Itis an INTENT(IN) argument that is the message
to be printed. Note that to generate a subprogram traceback you must specify the -trace
compiler switch.

Example
call error(’error’) | prints the string 'error’
! followed by a subprogram
! traceback

124 Lahey Fortran 90 Language Reference

EXIT Statement

EXIT Statement

Description
The EXIT statement terminates a DO loop.

Syntax
EXIT [do-construct-name]

Where:

do-construct-names the name of a DO construct that contains the EXIT statemeso- If
construct-namés omitted, it is as iflo-construct-namevere the name of the innermost DO
construct in which the EXIT statement appears.

Example
outer: do i=1, 10
inner: doj=1, 10
if (i>a) exit outer
if (j>b) exit ! exits inner

enddo inner
enddo outer

EXIT Subroutine

Description
Terminate the program and set the DOS error level.

Syntax
EXIT (ilevel)

Arguments
ilevelmust be of type INTEGER. It is the DOS error level set on program termination.

Example
call exit(3) ! exit -- DOS error level 3

EXP Function

Description
Exponential.

Lahey Fortran 90 Language Reference 125

Chapter 2 Alphabetical Reference

Syntax
EXP (X)

Arguments
x must be of type REAL or COMPLEX.

Result

The result is of the same typexaslts value is a REAL or COMPLEX representatioreof
If x is of type COMPLEX, its imaginary part is treated as a value in radians.

Example
a=exp(2.0) !ais assigned the value 7.38906

EXPONENT Function

Description
Exponent part of the model representation of a number.

Syntax
EXPONENT)

Arguments
x must be of type REAL.

Result

The result is of type default INTEGER. Its value is the value of the exponent part of the
model representation af

Example

i = exponent(3.8) ! i is assigned 2
i = exponent(-4.3)! i is assigned 3

EXTERNAL Statement

Description

The EXTERNAL statement specifies external procedures. Specifying a procedure name as
EXTERNAL permits the name to be used as an actual argument.

126 Lahey Fortran 90 Language Reference

FLOOR Function

Syntax
EXTERNAL external-name-list

Where:
external-name-lisis a comma-separated list of external procedures, dummy procedures, or
block data program units.

Remarks
If an intrinsic procedure name appears in an EXTERNAL statement, the intrinsic procedure
is not available in the scoping unit and the name is that of an external procedure.

A name can appear only once in all of the EXTERNAL statements in a scoping unit.

Example
subroutine fred (a, b, sin)
external sin ! sin is the name of an external
! procedure, not the intrinsic sin()
call bill (a, sin)
! sin can be passed as an actual arg

FLOOR Function

Description
Greatest INTEGER less than or equal to a number.

Syntax
FLOOR f, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is of type default INTEGER. Its value is equal to the greatest INTEGER less than
or equal ta. If kind is present, the kind is that specifiedKiyd. If kind is absent, the kind

is that of the default REAL type.

Example

i =floor(-2.1) !iis assigned the value -3
j=floor(2.1) !jis assigned the value 2

Lahey Fortran 90 Language Reference 127

Chapter 2 Alphabetical Reference

FLUSH Subroutine

Description
Empty the buffer for an input/output unit by writing to its corresponding file. Note that this
does not flush the DOS file buffer.

Syntax
FLUSH (unit)

Arguments
iunit must be of type INTEGER. Itis an INTENT(IN) argument that is the unit number of
the file whose buffer is to be emptied.

Example
call flush(11) ! empty buffer for unit 11

FORMAT Statement

Description
The FORMAT statement provides explicit information that directs the editing between the
internal representation of data and the characters that are input or output.

Syntax
FORMAT ([format-items])

Where:
format-itemds a comma-separated lisjdtata-edit-descriptor control-edit-descriptaror
char-string-edit-descriptgror [r] (format-item$

data-edit-descriptors Iw[.m]
or Bw[.m]

or Ow[.m]

or Zw[.m]

or Fw.d

or BEw.d[Ee]
or ENw.d[Ee€]
or ESw.d[Ee]
or Gw.d[Ee]
or Lw

or Alw]

or Dw.d

128 Lahey Fortran 90 Language Reference

FORMAT Statement

w, m, d, ande are INTEGER literal constants that represent field width, digits, digits after the
decimal point, and exponent digits, respectively.
control-edit-descriptois Tn

or TLn

or TRn

ornX

orS

or SP

or SS

or BN

or BZ

orr]/

or:

or kP

char-string-edit-descriptois a CHARACTER literal constant gHrep-chars
rep-charsis a string of characters.
c is the number of charactersrigp-chars

r, k, andn are positive INTEGER literal constants used to specify a number of repetitions of
thedata-edit-descriptorchar-string-edit-descriptqrcontrol-edit-descriptaror format-
item9

Remarks
The FORMAT statement must be labeled.

The comma between edit descriptors may be omitted in the following cases:

» between the scale factor (P) and the numberic edit descriptors F, E, EN, ES, D, or G.

» before a new record indicated by a slash when there is no repeat factor present.

+ after the slash for a new record.

« before or after the colon edit descriptor.

Edit descriptors may be nested within parentheses and may be preceded by a repeat factor.

A parenthesized list of edit descriptors may also be preceded by a repeat factor, indicating
that the entire list is to be repeated.

Lahey Fortran 90 Language Reference 129

Chapter 2 Alphabetical Reference

The edit descriptors

| (decimal INTEGER),

B (binary INTEGER),

O (octal INTEGER),

Z (hexadecimal INTEGER),

F (REAL or COMPLEX, no exponent on output),
E and D (REAL or COMPLEX, exponent on output),
EN (engineering notation),

ES (scientific notation),

G (generalized),

L (LOGICAL),

A (CHARACTER),

T (position from beginning of record),

TL (position left from current position),

TR (position right from current position),

X (position forward from current position),
S (default plus production on output),

SP (force plus production on output),

SS (suspend plus production on output),
BN (ignore non-leading blanks on input),
BZ (non-leading blanks are zeros on input),
/ (end of current record),

: (terminate format control), and

P (scale factor)

indicate the manner of data editing.

Descriptions of each edit descriptor are providetriput/Output Editing” beginning on
page 24.

The comma used to separate itenfeimat-itemsan be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if a delimiter character itself appears, either an apos-
trophe or quote, it must be as a consecutive pair without any blanks. Each such pair
represents a single occurence of the delimiter character.

Example
a=123.45
write (7,10) a
write (7,20) a
10 format (ell.5) !0.12345E+03
20 format (2p, €12.5) ! 12.3450E+01

130 Lahey Fortran 90 Language Reference

FRACTION Function

FRACTION Function

Description
Fraction part of the physical representation of a number.

Syntax
FRACTION (X)

Arguments
x must be of type REAL.

Result

The result is of the same kind»aslts value is the value of the fraction part of the physical
representation of.

Example
a = fraction(3.8) ! a is assigned the value 0.95

FUNCTION Statement

Description
The FUNCTION statement begins a function subprogram, and specifies its return type and
name (the function name by default), its dummy argument names, and whether it is recursive.

Syntax
[RECURSIVE] [type-spec JFUNCTION function-nam€ [dummy-arg-names |
) [RESULT (result-namg

or
[type-spec | RECURSIVE] FUNCTION function-namé [dummy-arg-names |
) [RESULT ¢esult-namg

Where:

type-speds INTEGER[kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX[kind-selector]

or CHARACTER][char-selector]

or LOGICAL [kind-selector]

or TYPE fype-namg

kind-selectoris ([KIND =] kind)

Lahey Fortran 90 Language Reference 131

Chapter 2 Alphabetical Reference

char-selectoiis (LEN = length[, KIND = kind])
or (length [[KIND =]kind])

or (KIND =kind[, LEN =length])

or * char-length []

kindis a scalar INTEGER expression that can be evaluated at compile time.

lengthis a scalar INTEGER expression

or*

char-lengthis a scalar INTEGER literal constant

or ()

function-names the name of the function.

dummy-arg-nameis a comma-separated list of dummy argument names.

result-namas the name of the result variable.

Remarks

The keyword RECURSIVE must be present if the function directly or indirectly calls itself
or a function defined by an ENTRY statement in the same subprogram. RECURSIVE must
also be present if a function defined by an ENTRY statement directly or indirectly calls itself,
another function defined by an ENTRY statement, or the function defined by the FUNC-
TION statement.

A function that calls itself directly must use the RESULT option.
If the function result is array-valued or a pointer, this must be specified in the specification
of the result variable in the function body.

Example
integer function sum(i,j) result(k)

GETCL Subroutine

132

Description
Get command line.

Syntax
GETCL (resul)

Arguments

resultmust be of type CHARACTER. Itis an INTENT(OUT) argument that is assigned the
characters on the DOS command line beginning with the first non-white-space character after
the program name.

Lahey Fortran 90 Language Reference

GETENYV Function

Example
call getcl(cl) ! clis assigned the command line

GETENYV Function

Description
Get the specified environment variable.

Syntax
GETENV(variable)

Arguments
variablemust be of type default CHARACTER. Itis an INTENT(IN) argument which spec-
ifies the environment variable to check.

Result

The result is of type default character and is set to the value of the environment variable spec-
ified by variable. If the specified variable is not defined in the environment then GETENV
will return a zero-length string.

Example
character (len=80) :: mypath
mypath = getenv(’path’)

GOTO Statement

Description
The GOTO statement transfers control to a statement identified by a label.

Syntax
GOTOlabel

Where:
labelis the label of a branch target statement.

Remarks
label must be the label of a branch target statement in the same scoping unit as the GOTO
statement.

Lahey Fortran 90 Language Reference 133

Chapter 2

Alphabetical Reference

Example
a=b
goto 10 I branches to 10
b=c I never executed
10 c¢=d

HUGE Function

Description
Largest representable number of data type.

Syntax
HUGE (x)

Arguments
x must be of type REAL or INTEGER.

Result
The result is of the same type and kincadts value is the value of the largest number in
the data type aof.

Example
a =huge(4.1) ! ais assigned the value 0.340282E+39

IACHAR Function

Description
Position of a character in the ASCII collating sequence.

Syntax
IACHAR (c)

Arguments
¢ must be of type default CHARACTER and of length one.

Result
The result is of type default INTEGER. Its value is the positianinfthe ASCII collating
sequence and is in the ran@eciachar(¢ <127

134 Lahey Fortran 90 Language Reference

IAND Function

Example
i =iachar('c’) !iis assigned the value 99

IAND Function

Description
Bit-wise logical AND.

Syntax
IAND (i, j)

Arguments
i must be of type INTEGER.
j must be of type INTEGER and of the same kind as

Result

The result is of type INTEGER. Its value is the value obtained by performing a bit-wise log-
ical AND ofi andj.

Example
i=53 1i=00110101 binary (lowest-order byte)
j=45 1j=00101101 binary (lowest-order byte)
k=iand(i,j) ! k = 00100101 binary (lowest-order byte)

I k = 37 decimal

IBCLR Function

Description
Clear one bit to zero.

Syntax
IBCLR (i, pos

Arguments
i must be of type INTEGER.

posmust be of type INTEGER. It must be non-negative and less than the number df bits in

Lahey Fortran 90 Language Reference 135

Chapter 2 Alphabetical Reference

Result

The result is of type INTEGER and of the same kind dts value is the value ofxcept
that bitposis set to zero. Note that the lowest ongesis zero.

Example
i =ibclr (37,2) ! i is assigned the value 33

IBITS Function

Description
Extract a sequence of bits.

Syntax
IBITS (i, pos len)

Arguments
i must be of type INTEGER.

posmust be of type INTEGER. It must be non-negative@o®tlen must be less than or
equal to the number of bitsiin

len must be of type INTEGER and non-negative.
Result
The result is of type INTEGER and of the same kind dts value is the value of the

sequence den bits beginning wittpos right adjusted with all other bits set to 0. Note that
the lowest ordeposis zero.

Example
i = ibits (37,2,2) ! i is assigned the value 1

IBSET Function

Description
Set a bit to one.

136 Lahey Fortran 90 Language Reference

ICHAR Function

Syntax
IBSET (, pos

Arguments
i must be of type INTEGER.

posmust be of type INTEGER. It must be non-negative and less than the number af bits in

Result

The result is of type INTEGER and of the same kind dts value is the value ofexcept
that bitposis set to one. Note that the lowest orgesis zero.

Example
i =ibset (37,1) ! i is assigned the value 39

ICHAR Function

Description

Position of a character in the processor collating sequence associated with the kind of the
character.

Syntax
ICHAR (c)

Arguments
¢ must be of type CHARACTER and of length one.

Result

The resultis of type default INTEGER. Its value is the positiarirothe processor collating
sequence associated with the kind¢ahd is in the rang® <ichar(c)<n-1 , whends
the number of characters in the collating sequence.

Example
i =ichar('c’) !iis assigned the value 99 for
I character c in the ASCII

I collating sequence

Lahey Fortran 90 Language Reference 137

Chapter 2 Alphabetical Reference

IEOR Function

Description
Bit-wise logical exclusive OR.

Syntax
IEOR (, j)

Arguments
i must be of type INTEGER.
j must be of type INTEGER and of the same kind as

Result

The result is of type INTEGER. Its value is the value obtained by performing a bit-wise log-
ical exclusive OR of and;.

Example
i=53 1i=00110101 binary (lowest-order byte)
j=45 1j=00101101 binary (lowest-order byte)
k=ieor(i,j) ! k = 00011000 binary (lowest-order byte)

' k = 24 decimal

IF Construct

Description

The IF construct controls which, if any, of one or more blocks of statements or executable
constructs will be executed.

Syntax
[construct-namg IF (expy) THEN
block
[ELSE IF expn THEN [construct-name]
block]

[ELSE[construct-name]
block]
END IF [construct-name]

Where:
construct-namés an optional name for the construct.

138 Lahey Fortran 90 Language Reference

IF-THEN Statement

expris a scalar LOGICAL expression.

blockis a sequence of zero or more statements or executable constructs.

Remarks

At most one of the blocks contained within the IF construct is executed. If there is an ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. Thexprs are evaluated in the order of their appearance in the construct until a true
value is found or an ELSE statement or END IF statement is encountered. If a true value or
an ELSE statement is found, the block immediately following is executed and this completes
the execution of the construct. Téagis in any remaining ELSE IF statements of the IF con-
struct are not evaluated. If none of the evaluated expressions is true and there is no ELSE
statement, the execution of the construct is completed without the execution of any block
within the construct.

If the IF statement specifies a construct name, the corresponding END IF statement must
specify the same construct name. If the IF statement does not specify a construct name, the
corresponding END IF statement must not specify a construct name.

Example

if (a>b) then
c=d

else if (a<b) then
d=c

else ! a=b
stop

end if

IF-THEN Statement

Description
The IF-THEN statement begins an IF construct.

Syntax
[construct-name] IF (expr) THEN

Where:
construct-namés an optional name for the IF construct.

expris a scalar LOGICAL expression.

Lahey Fortran 90 Language Reference 139

Chapter 2 Alphabetical Reference

Remarks

At most one of the blocks contained within the IF construct is executed. If there is an ELSE
statement in the construct, exactly one of the blocks contained within the construct will be
executed. Thexprs are evaluated in the order of their appearance in the construct until a true
value is found or an ELSE statement or END IF statement is encountered. If a true value or
an ELSE statement is found, the block immediately following is executed and this completes
the execution of the construct. Téaepis in any remaining ELSE IF statements of the IF con-
struct are not evaluated. If none of the evaluated expressions is true and there is no ELSE
statement, the execution of the construct is completed without the execution of any block
within the construct.

Example
if (@>b) then
c=d
else
d=c
end if

IF Statement

Description
The IF statement controls whether or not a single executable statement is executed.

Syntax
IF (expn action-statement

Where:
expris a scalar LOGICAL expression.

action-statemenis an executable statement other than another IF or the END statement of a
program, function, or subroutine.

Remarks
Execution of an IF statement causes evaluatiaxpi If the value oexpris true,action-

statements executed. If the value is falsstion-statemenis not executed.

Example
if(@>=b)a=-a

140 Lahey Fortran 90 Language Reference

IMPLICIT Statement

IMPLICIT Statement

Description

The IMPLICIT statement specifies, for a scoping unit, a type and optionally a kind or a
CHARACTER length for each name beginning with a letter specified in the IMPLICIT state-
ment. Alternately, it can specify that no implicit typing is to apply in the scoping unit.

Syntax
IMPLICIT implicit-specs

or
IMPLICIT NONE

Where:
implicit-specds a comma-separated listtgpe-spedletter-specs

type-speds INTEGER[kind-selector]
or REAL [kind-selector]

or DOUBLE PRECISION

or COMPLEX[kind-selector]

or CHARACTER[char-selector]

or LOGICAL [kind-selector]

or TYPE fype-namg

kind-selectoris ([KIND =] kind)

char-selectotis (LEN = length[, KIND = kind])
or (length [[KIND =]kind])

or (KIND =kind[, LEN =length])

or * char-length []

type-names the name of a user-defined type.
kindis a scalar INTEGER expression that can be evaluated at compile time.

lengthis a scalar INTEGER expression
or*

char-lengthis a scalar INTEGER literal constant
or (*)

letter-specss a comma-separated listlefter[-letter]

letter is one of the letters A-Z.

Lahey Fortran 90 Language Reference 141

Chapter 2 Alphabetical Reference

Remarks

A letter-speconsisting of two letters separated by a minus is equivalent to writing a list con-
taining all of the letters in alphabetical order in the alphabetic sequence from the first letter
through the second letter. The same letter must not appear as a single letter or be included in
a range of letters more than once in all of the IMPLICIT statements in a scoping unit.

In the absence of an implicit statement, a program unit is treated as if it had a host with the
declaration

implicit integer (i-n), real (a-h, 0-z)

IMPLICIT NONE specifies the null mapping for all the letters. If a mapping is not specified
for a letter, the default is the mapping in the host scoping unit.

If IMPLICIT NONE is specified in a scoping unit, it must precede any PARAMETER state-
ments that appear in the scoping unit and there must be no other IMPLICIT statements in the
scoping unit.

Any data entity that is not explicitly declared by a type declaration statement, is not an intrin-
sic function, and is not made accessible by use association or host association is declared
implicitly to be of the type (and type parameters, kind and length) mapped from the first letter
of its name, provided the mapping is not null.

An explicit type specification in a FUNCTION statement overrides an IMPLICIT statement
for the name of that function subprogram.

Example
implicit character (c), integer (a-b, d-z)
! specifies that all data objects
! beginning with ¢ are implicitly of
! type character, and other data
! objects are of type integer

INCLUDE Line

142

Description
The INCLUDE line causes text in another file to be processed as if the text therein replaced
the INCLUDE line. The INCLUDE line is not a Fortran statement.

Syntax
INCLUDE filename

Where:
filenameis a CHARACTER literal constant that corresponds to a file that contains source text
to be included in place of the INCLUDE line.

Lahey Fortran 90 Language Reference

INDEX Function

Remarks

The INCLUDE line must be the only non-blank text on this source line other than an optional
trailing comment. A statement label or additional statements are not allowed on the line.

Lahey Fortran limits the level of nesting of include files to twenty.

Example
include "types.for" !include a file named types.for
lin place of this INCLUDE line

INDEX Function

Description
Starting position of a substring within a string.

Syntax
INDEX (string, substring back

Required Arguments
string must be of type CHARACTER.

substringmust be of type CHARACTER with the same kindsasg.

Optional Arguments
backmust be of type LOGICAL.

Result

The result is of type default INTEGER. béckis absent or false, the result value is the posi-
tion number irstring where the first instance efibstringbegins or zero if there is no such
value or ifstring is shorter thasubstring If substringis of zero length, the result value is
one.

If backis present and true, the result value is the position numb#irig where the last
instance okubstringbegins. Ifstringis shorter thasubstringor if substringis not instring,
zero is returned. Bubstringis of zero length, LEN{ring)+1 is returned.

Example
i = index(‘'mississippi', 'si’)
l'iis assigned the value 4
i = index(‘'mississippi', 'si', back=.true.)
liis assigned the value 7

Lahey Fortran 90 Language Reference 143

Chapter 2 Alphabetical Reference

INQUIRE Statement

Description
The INQUIRE statement enables the program to make inquiries about a file's existence, con-
nection, access method or other properties.

Syntax
INQUIRE (inquire-speck

or
INQUIRE (IOLENGTH =iolength output-items

Where:

inquire-specss a comma-separated list of
[UNIT =] external-file-unit

or FILE =file-name-expr

or IOSTAT =iostat

or ERR =label

or EXIST =exist

or OPENED -opened

or NUMBER =number

or NAMED =named

or NAME =name

or ACCESS =access

or SEQUENTIAL =sequential

or DIRECT =direct

or FORM =form

or FORMATTED =formatted

or UNFORMATTED =unformatted
or RECL =recl

or NEXTREC =nextrec

or BLANK = blank

or POSITION =position

or ACTION =action

or READ =read

or WRITE =write

or READWRITE =readwrite

or DELIM =delim

or PAD =pad

or FLEN =flen

or BLOCKSIZE =blocksize

or CARRIAGECONTROL =carriagecontrol

external-file-unitis a scalar INTEGER expression that evaluates to the input/output unit
number of an external file.

144 Lahey Fortran 90 Language Reference

INQUIRE Statement

file-name-expis a scalar CHARACTER expression that evaluates to the name of a file.

iostatis a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

labelis the statement label of the statement branched to if an error occurs.

existis a scalar default LOGICAL variable that is assigned the value true if the file specified
in the FILE= specifier exists or the input/output unit specified in the UNIT= specifier exists,
and false otherwise.

openeds a scalar default LOGICAL variable that is assigned the value true if the file or
input/output unit specified is connected, and false otherwise.

numberis a scalar default INTEGER variable that is assigned the value of the input/output
unit of the external file.

namedis a scalar default LOGICAL variable that is assigned the value true if the file has a
name and false otherwise.

nameis a scalar default CHARACTER variable that is assigned the name of the file, if the
file has a name, otherwise it becomes undefined.

accesss a scalar default CHARACTER variable that evaluates to SEQUENTIAL if the file
is connected for sequential access, DIRECT if the file is connected for direct A0ekIS-
PARENT if the file is connected for transparent acces§NDEFINED if the file is not
connected.

sequentials a scalar default CHARACTER variable that is assigned the value YES if
sequential access is an allowed access method for the file, NO if sequential access is not
allowed, and UNKNOWN if the processor is unable to determine if sequential access is
allowed for the file.

directis a scalar default CHARACTER variable that is assigned the value YES if direct
access is an allowed access method for the file, NO if direct access is not allowed, and
UNKNOWN if the processor is unable to determine if direct access is allowed for the file.

formis a scalar default CHARACTER variable that is assigned the value FORMATTED if
the file is connected for formatted input/output, UNFORMATTED if the file is connected for
unformatted input/output, and UNDEFINED if there is no connection.

formattedis a scalar default CHARACTER variable that is assigned the value YES if format-
ted is an allowed form for the file, NO if formatted is not allowed, and UNKNOWN if the
processor is unable to determine if formatted is an allowed form for the file.

unformatteds a scalar default CHARACTER variable that is assigned the value YES if
unformatted is an allowed form for the file, NO if unformatted is not allowed, and
UNKNOWN if the processor is unable to determine if unformatted is an allowed form for the
file.

Lahey Fortran 90 Language Reference 145

Chapter 2 Alphabetical Reference

146

reclis a scalar default INTEGER variable that evaluates to the record length for a file con-
nected for direct access, or the maximum record length for a file connected for sequential
access.

nextrecis a scalar default INTEGER variable that is assigned the walbiewheren is the
number of the last record read or written on the file connected for direct access. If the file
has not been written to or read freince becoming connected, the value 1 is assigned. If
the file is not connected for direct access, the value becomes undefined.

blankis a scalar default CHARACTER variable that evaluates to NULL if null blank control
is in effect, ZERO if zero blank control is in effect, and UNDEFINED if the file is not con-
nected for formatted input/output.

positionis a scalar default CHARACTER variable that evaluates to REWIND if the newly
opened sequential access file is positioned at its initial point; APPEND if it is positioned
before the endfile record if one exists and at the file terminal point otherwise; and ASIS if the
position is after the endfile record.

actionis a scalar default CHARACTER variable that evaluates to READ if the file is con-
nected for input only, WRITE if the file is connected for output only, and READWRITE if
the file is connected for input and output.

readis a scalar default CHARACTER variable that is assigned the value YES if READ is an
allowed action on the file, NO if READ is not an allowed action of the file, and UNKNOWN
if the processor is unable to determine if READ is an allowed action on the file.

write is a scalar default CHARACTER variable that is assigned the value YES if WRITE is
an allowed action on the file, NO if WRITE is not an allowed action of the file, and
UNKNOWN if the processor is unable to determine if WRITE is an allowed action on the
file.

readwriteis a scalar default CHARACTER variable that is assigned the value YES if READ-
WRITE is an allowed action on the file, NO if READWRITE is not an allowed action of the
file, and UNKNOWN if the processor is unable to determine if READWRITE is an allowed
action on the file.

delimis a scalar default CHARACTER variable that evaluates to APOSTROPHE if the apos-
trophe will be used to delimit character constants written with list-directed or namelist
formatting, QUOTE if the quotation mark will be used, and NONE if neither quotation marks
nor apostrophes will be used.

padis a scalar default CHARACTER variable that evaluates to YES if the formatted input
record is padded with blanks and NO otherwise.

flenis a scalar default INTEGER variable that is assigned the length of the file in bytes.

blocksizes a scalar default INTEGER variable that evaluates to the size, in bytes, of the I/O
buffer. This value may be internally adjusted to a record size boundary if the unit has been
connected for direct access and therefore may no agree with the BLOCKSIZE- specifier
specified in an OPEN Statement.

Lahey Fortran 90 Language Reference

INT Function

carriagecontrolis a scalar default CHARACTER variable that evaluates to FORTRAN if the
first character of a formatted sequential record is to be used for carriage control, and LIST
otherwise.

iolengthis a scalar default INTEGER variable that is assigned a value that would result from
the use obutput-itemsn an unformatted output statement. The value can be used as a
RECL= specifier in an OPEN statement that connects a file for unformatted direct access
when there are input/output statements with the same bsitpéit-items.

output-itemss a comma-separated list of items used igngthas explained immediately
above.

Remarks

inquire-specsnust contain one FILE= specifier or one UNIT= specifier, but not both, and at
most one of each of the other specifiers.

In the inquire by unit form of the INQUIRE statement, if the optional characters UNIT= are
omitted from the unit specifier, the unit specifier must be the first itanginre-specs

When a returned value of a specifier other than the NAME= specifier is of type CHARAC-
TER and the processor is capable of representing letters in both upper and lower case, the
value returned is in upper case.

If an error condition occurs during execution of an INQUIRE statement, all of the inquiry
specifier variables become undefined, except for the variable in the IOSTAT= specifier (if

any).

Example
inquire (unit=8, access=acc, err=200)
I what access method for unit 82 goto 200 on error
inquire (this_unit, opened=opnd, direct=dir)
lis unit this_unit open? direct access allowed?
inquire (file="myfile.dat", recl=record_length)
I'what is the record length of file "myfile.dat"?

INT Function

Description
Convert to INTEGER type.

Lahey Fortran 90 Language Reference 147

Chapter 2 Alphabetical Reference

Syntax
INT (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The result is of type INTEGER. Kindis present, the kind is that specifiedkiyd. The
result's value is the value afwithout its fractional part. l& is of type COMPLEX, the
result's value is the value of the real parm efithout its fractional part.

Example
b =int(-3.6) ! b is assigned the value -3

INTEGER Statement

148

Description
The INTEGER statement declares entities of type INTEGER.

Syntax
INTEGER[kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selectoiis ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expris a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-namd (array-speg] [= initialization-expr]
or function-name (array-speg]

array-speds an array specification.
initialization-expris an expression that can be evaluated at compile time.

entity-namds the name of a data object being declared.

Lahey Fortran 90 Language Reference

INTEGER Statement

function-namas the name of a function being declared.

Remarks
The same attribute must not appear more than once in a INTEGER statement.

function-nameanust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the ksitibes Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear gntity-nameas a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spedor afunction-namehat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a INTEGER statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

Lahey Fortran 90 Language Reference 149

Chapter 2

Alphabetical Reference

An entitymust not be explicitly given any attribute more than once in a scoping unit.

Example
integer za, b, ¢ ! ab, andcare oftypeinteger
integer, dimension (2, 4) :: d
I dis a?2 by 4 array of integers
integer :: e =2 linteger e is initialized

INTENT Statement

Description
The INTENT statement specifies the intended use of a dummy argument.

Syntax
INTENT (intent-speg [::] dummy-args

Where:
intent-speds IN
or OUT

or IN OUT

dummy-argss a comma-separated list of dummy arguments.

Remarks

The INTENT (IN) attribute specifies that the dummy argument is intended to receive data
from the invoking scoping unit. The dummy argument must not be redefined or become
undefined during the execution of the procedure.

The INTENT (OUT) attribute specifies that the dummy argument is intended to return data
to the invoking scoping unit. Any actual argument that becomes associated with such a
dummy argument must be definable.

The INTENT (IN OUT) attribute specifies that the dummy argument is intended for use both
to receive data from and to return data to the invoking scoping unit. Any actual argument
that becomes associated with such a dummy argument must be definable.

The INTENT statement must not specify a dummy argument that is a dummy procedure or a
dummy pointer.

Example
subroutine ex (a, b, ¢)
real ::a, b, c
intent (in) a
intent (out) b
intent (in out) ¢

150 Lahey Fortran 90 Language Reference

INTERFACE Statement

INTERFACE Statement

Description

The INTERFACE statement begins an interface block. An interface block specifies the
forms of reference through which a procedure can be invoked. An interface block can be
used to specify a procedure interface, a defined operation, or a defined assignment.

Syntax
INTERFACE(generic-spec]

Where:

generic-speds generic-name

or OPERATOR (defined-operato)
or ASSIGNMENT (=)

generic-namés the name of a generic procedure.

defined-operatois one of the intrinsic operators
or .operator-name

operator-names a user-defined name for the operation, consisting of one to 31 letters.

Remarks
Procedure interface

A procedure interface consists of the characteristics of the procedure, the name of the proce-
dure, the name and characteristics of each dummy argument, and the procedure's generic
identifiers, if any.

An interface statement withgeneric-namespecifies a generic interface for each of the pro-
cedures in the interface block.

Defined operations

If OPERATOR is specified in an INTERFACE statement, all of the procedures specified in
the interface block must be functions that can be referenced as defined operations. In the case
of functions of two arguments, infix binary operator notation is implied. In the case of func-
tions of one argument, prefix operator notation is implied. OPERATOR must not be
specified for functions with no arguments or for functions with more than two arguments.

The dummy arguments must be non-optional dummy data objects and must be specified with
INTENT (IN) and the function result must not have assumed CHARACTER length. If the
operator is an intrinsic-operator, the number of function arguments must be consistent with
the intrinsic uses of that operator.

Lahey Fortran 90 Language Reference 151

Chapter 2 Alphabetical Reference

A given defined operator may, as with generic names, apply to more than one function, in
which case it is generic in exact analogy to generic procedure names. For intrinsic operator
symbols, the generic properties include the intrinsic operations they represent. Because both
forms of each relational operator have the same interpretation, extending one form (such as
<=) has the effect of defining both forms (<= and .LE.).

Defined assignments

If ASSIGNMENT is specified in an INTERFACE statement, all the procedures in the inter-
face block must be subroutines that can be referenced as defined assignments. Each of these
subroutines must have exactly two dummy arguments. Each argument must be non-optional.
The first argument must have INTENT (OUT) or INTENT (IN OUT) and the second argu-
ment must have INTENT (IN). A defined assignment is treated as a reference to the
subroutine, with the left-hand side as the first argument and the expession to the right of the
equals the second argument. The ASSIGNMENT generic specification specifies that the
assignment operation is extended or redefined if both sides of the equals sign are of the same
derived type.

Example
interface ! interface without generic specification
subroutine ex (a, b, ¢)
implicit none
real, dimension (2,8) :: a, b, c
intent (in) a
intent (out) b
end subroutine ex
function why (t, f)
implicit none
logical, intent (in) :: t, f
logical :: why
end function why
end interface

interface swap ! generic swap routine
subroutine real_swap(x, Yy)
implicit none
real, intent (in out) :: X, y
end subroutine real_swap
subroutine int_swap(x, y)
implicit none
integer, intent (in out) :: X, y
end subroutine int_swap
end interface

152 Lahey Fortran 90 Language Reference

INTRINSIC Statement

interface operator (*) ! use * for set intersection
function set_intersection (a, b)
use set_module ! contains definition of type set
implicit none
type (set), intent (in) :: a, b
type (set) :: set_intersection
end function set_intersection
end interface

interface assignment (=) ! use = for integer to bit
subroutine integer_to_bit (n, b)
implicit none
integer, intent (in) :: n
logical, intent (out) :: b(:)
end subroutine integer_to_bit
end interface

INTRINSIC Statement

Description

The INTRINSIC statement specifies a list of names that represent intrinsic procedures.
Doing so permits a name that represents a specific intrinsic function to be used as an actual
argument.

Syntax
INTRINSIC intrinsic-procedure-names

Where:
intrinsic-procedure-nameis a comma-separated list of intrinsic procedures.

Remarks
The appearance of a generic intrinsic function name in an INTRINSIC statement does not
cause that name to lose its generic property.

If the specific name of an intrinsic function is used as an actual argument, the name must
either appear in an INTRINSIC statement or be given the intrinsic attribute in a type decla-
ration statement in the scoping unit.

Only one appearance of a name in all of the INTRINSIC statements in a scoping unit is
permitted.

A name must not appear in both an EXTERNAL and an INTRINSIC statement in the same
scoping unit.

Lahey Fortran 90 Language Reference 153

Chapter 2 Alphabetical Reference

Example
intrinsic dlog, dabs ! dlog and dabs allowed as
I actual arguments
call zee (a, b, dlog)

INTRUP Subroutine

Description
Execute a DOS or BIOS function.

Syntax
INTRUP (intary, ntrup)

Arguments

intary must be a nine-element array of type default INTEGER. Itis an INTENT(IN OUT)
argument. The elements of the array correspond to the registers EAX, EBX, ECX, EDX, DS,
ES, EDI, ESI, and flags, in that order. The registers, except flags, are loaded from the array
before the interrupt is executed. All registers, including flags, are assigned back to the array
after the interrupt is finished. If the user-supplied selector for DS or ES is not legitimate for
the protected-mode environment, then the DS or ES selector that was loaded upon entry to
the subroutine will be used. The selector actually used is assigned to the array element cor-
responding to DS or ES, respectively.

To check whether a particular flag is set after returning from INTRUP, use the following
code:

if (iland(intary(9), myflag) .NE. 0) then ...

154 Lahey Fortran 90 Language Reference

INVALOP Subroutine

wheremyflag is one of the following values:

Table 9: intary values

flag value
carry 1
parity 4
auxiliary carry 16
zero 64
sign 128
trap 256
interrupt enable 512
direction 1024
overflow 2048

ntrup must be of type INTEGER, kind 2. Itis an INTENT(IN) argument that is the interrupt

number to be executed.

Example
call intrup(regs, 21) ! int21 call

INVALOP Subroutine

Description

The initial invocation of the INVALOP subroutine masks the invalid operator interrupt on
the floating-point unit. [flag must be set to true on the first invocation. Subsequent invoca-

tions return true or false in thigag variable if the exception has occurred or not occurred,

respectively.

Syntax
INVALOP (Iflag)

Arguments

Iflag must be of type LOGICAL. Itis assigned the value true if an invalid operation excep-
tion has occurred, and false otherwise.

Lahey Fortran 90 Language Reference 155

Chapter 2 Alphabetical Reference

Example
call invalop (Iflag) ! mask the invalid operation interrupt

IOR Function

Description
Bit-wise logical inclusive OR.

Syntax
IOR (.,))

Arguments
i must be of type INTEGER.
j must be of type INTEGER and of the same kind as

Result
The result is of type INTEGER and of the same kind as

Example
i=53 1i=00110101 binary (lowest-order byte)
j=45 1j=00101101 binary (lowest-order byte)
k=ior(i,j) !k =00111101 binary (lowest-order byte)

Ik = 61 decimal

IOSTAT_MSG Subroutine

156

Description
Get a runtime I/O error message then continue processing.

Syntax
IOSTAT_MSG (ostat message

Arguments
iostatmust be of type INTEGER. It is an INTENT(IN) argument that passes the IOSTAT
value from a preceding input/output statement.

messagenust be of type CHARACTER. Itis an INTENT(OUT) argument that is assigned
the runtime error message corresponding to the IOSTAT valostat

Lahey Fortran 90 Language Reference

ISHFT Function

Example
call iostat_msg(iostat,msg) ! msg is assigned
I the runtime error message
I corresponding to iostat

ISHFT Function

Description
Bit-wise shift.

Syntax
ISHFT (, shiff)

Arguments
i must be of type INTEGER.

shift must be of type INTEGER. Its absolute value must be less than the number of. bits in

Result

The result is of type INTEGER and of the same kind dts value is the value ofhifted
by shift positions; ifshiftis positive, the shift is to the left,shiftis negative, the shift is to
the right. Bits shifted out are lost.

Example
i =ishft(3,2) !iis assigned the value 12

ISHFTC Function

Description
Bit-wise circular shift of rightmost bits.

Syntax
ISHFTC ¢, shift, size

Required Arguments
i must be of type INTEGER.

shiftmust be of type INTEGER. The absolute valustift must be less than or equal to size.

Lahey Fortran 90 Language Reference 157

Chapter 2 Alphabetical Reference

Optional Arguments

sizemust be of type INTEGER. The valuesifemust be positive and must not be greater
than BIT_SIZE (). If absent, it is as Bizewere present with the value BIT_SIZi. (

Result

The result is of type INTEGER and of the same kind dts value is equal to the valueiof

with its rightmostsizebits circularly shifted left bghift positions.

Example
i = ishftc(13,-2,3) !iis assigned the value 11

KIND Function

Description
Kind type parameter.

Syntax
KIND (x)

Arguments

x can be of any intrinsic type.
Result
The result is a default scalar INTEGER. Its value is equal to the kind type parmater value of

X.

Example

i =kind (0.0) ! i is assigned the value 4

LBOUND Function

Description

Lower bounds of an array or a dimension of an array.

158 Lahey Fortran 90 Language Reference

LEN Function

Syntax
LBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimensioarcdy.

Result

The result is of type default INTEGER. dimis presentthe result is a scalar with the value
of the lower bound odim. If dimis absent, the result is an array of rank one with values
corresponding to the lower bounds of each dimensiamraj.

The lower bound of an array section is always one. The lower bound of a zero-sized dimen-
sion is also always one.

Example
integer, dimension (3,-4:0) :: i
integer :: k,j(2)
j=Ibound (i) !jis assigned the value [1 -4]
k = Ibound (i, 2) !k is assigned the value -4

LEN Function

Description
Length of a CHARACTER data object.

Syntax
LEN (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of charactgisgror in

an element oftring if string is array-valued.

Example
i =len (‘zee") !iis assigned the value 3

Lahey Fortran 90 Language Reference 159

Chapter 2 Alphabetical Reference

LEN_TRIM Function

Description
Length of a CHARACTER entity without trailing blanks.

Syntax
LEN_TRIM (string)

Arguments
string must be of type CHARACTER. It can be scalar or array-valued.

Result
The result is a scalar default INTEGER. Its value is the number of charac&isdtfor in
an element oftring if string is array-valued) minus the number of trailing blanks.

Example
i =len_trim ('zee ") !iis assigned the value 3
i=len_trim (" ") !iis assigned the value zero

LGE Function

160

Description
Test whether a string is lexically greater than or equal to another string based on the ASCII
collating sequence.

Syntax
LGE (string_a string_b

Arguments
string_amust be of type default CHARACTER.

string_bmust be of type default CHARACTER.

Result

The result is of type default LOGICAL. lIts value is trustifng_bprecedestring_ain the
ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
the result is false. If both strings are of zero length the result is true.

Example
| = Ige(‘elephant’, 'horse") ! | is assigned the
I value false

Lahey Fortran 90 Language Reference

LGT Function

LGT Function

Description
Test whether a string is lexically greater than another string based on the ASCII collating
sequence.

Syntax
LGT (string_a string_b

Arguments
string_amust be of type default CHARACTER.

string_bmust be of type default CHARACTER.

Result

The result is of type default LOGICAL. Its value is trustiing_bprecedestring_ain the

ASCII collating sequence; otherwise the result is false. If both strings are of zero length the
result is false.

Example
| = lIgt(‘elephant’, 'horse") ! | is assigned the
I value false

LLE Function

Description
Test whether a string is lexically less than or equal to another string based on the ASCII col-
lating sequence.

Syntax
LLE (string_a string_b

Arguments

string_amust be of type default CHARACTER.

string_bmust be of type default CHARACTER.

Result

The result is of type default LOGICAL. Its value is trustiing_aprecedestring_bin the

ASCII collating sequence, or if the strings are the same ignoring trailing blanks; otherwise
the result is false. If both strings are of zero length the result is true.

Lahey Fortran 90 Language Reference 161

Chapter 2 Alphabetical Reference

Example
| = lle(‘elephant’, 'horse") ! | is assigned the
I value true
LLT Function
Description
Test whether a string is lexically less than another string based on the ASCII collating
sequence.
Syntax

LLT (string_a string_b

Arguments
string_amust be of type default CHARACTER.

string_bmust be of type default CHARACTER.

Result

The result is of type default LOGICAL. lIts value is trustifng_aprecedestring_bin the
ASCII collating sequence; otherwise the result is false. If both strings are of zero length the
result is false.

Example

| = llt('elephant’, 'horse’) ! | is assigned the
I value true

LOG Function

Description
Natural logarithm.

Syntax
LOG ()

Arguments

x must be of type REAL or COMPLEX. ¥is REAL, it must be greater than zerox i
COMPLEX, it must not be equal to zero.

162 Lahey Fortran 90 Language Reference

LOG10 Function

Result

The result is of the same type and kincadts value is equal to a REAL representation of
logexif xis REAL. Its value is equal to the principal value with imaginarygart inthe range
-n<w< if xis COMPLEX.

Example
x =log (3.7) ! x is assigned the value 1.30833

LOG10 Function

Description
Common logarithm.

Syntax
LOG10)

Arguments
x must be of type REAL. The valuexfnust be greater than zero.

Result
The result is of the same type and kinckadts value is equal to a REAL representation of
log; px.

Example
x =1og10 (3.7) ! x is assigned the value 0.568202

LOGICAL Function

Description
Convert between kinds of LOGICAL.

Syntax
LOGICAL (I, kind)

Required Arguments
| must be of type LOGICAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Lahey Fortran 90 Language Reference 163

Chapter 2 Alphabetical Reference

Result
The result is of type LOGICAL. Kkindis present, the result kind is thatkirid; otherwise
it is of default LOGICAL kind. The result value is that of

Example
| = logical (.true., 4) ! | is assigned the value
I true with kind 4

LOGICAL Statement

Description
The LOGICAL statement declares entities of type LOGICAL.

Syntax
LOGICAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:
kind-selectoiis ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expiis a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-nam¢ (array-speg] [= initialization-expr]
or function-name (array-speg]

array-speds an array specification.

initialization-expris an expression that can be evaluated at compile time.
entity-namds the name of a data object being declared.

function-namas the name of a function being declared.

Remarks

The same attribute must not appear more than once in a LOGICAL statement.

function-namenust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

164 Lahey Fortran 90 Language Reference

LOGICAL Statement

If = initialization-exprappears, a double colon must appear before the ksttities Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear gntity-nameas a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-specfor afunction-namehat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entitymust not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a LOGICAL statement must not have the EXTERNAL or INTRINSIC attribute
specified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

Example
logical :: a, b, ¢ !'a, b, and c are of type logical
logical, dimension (2, 4) :: d
Idis a2 by 4 array of logical
logical :: e = .true. ! logical e is initialized

Lahey Fortran 90 Language Reference 165

Chapter 2 Alphabetical Reference

MATMUL Function

166

Description
Matrix multiplication.

Syntax
MATMUL (matrix_a matrix_b

Arguments

matrix_amust be of type INTEGER, REAL, COMPLEX, or LOGICAL. It must be array-
valued and of rank one or tworifatrix_bis of rank two, and of rank two fhatrix_bis of
rank one..

matrix_bmust be of numerical typerifiatrix_ais of numerical type and of type LOGICAL
if matrix_ais of type LOGICAL. It must be array-valued and of rank one or twoatfix_a
is of rank two, and of rank two mhatrix_ais of rank one. The size of the first dimension
must be the same as the size of the last dimensioinix_a

Result

If the arguments are of the same numeric type, the result is of that type. If their kinds are the
same the result kind is that of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.

If the arguments are of different numeric type and one is of type COMPLEX, then the result
is of type COMPLEX. If the arguments are of different numeric type, and neither is of type
COMPLEX, the result is of type REAL.

If the arguments are of type LOGICAL, the result is of type LOGICAL. If their kinds are the
same the result kind is that of the arguments. If their kind is different, the result kind is that
of the argument with the greater kind parameter.

The value and shape of the result are as follows:

If matrix_ahas shapen(m) andmatrix_bhas shapen, k), the result has shape k). Ele-
ment , j) of the result has the value SUitrix_g(i, :) * matrix_K:, j)) if the arguments are
of numeric type and has the value ANdtrix_d(i, :) * matrix_HK:, j)) if the arguments are
of type LOGICAL.

If matrix_ahas shapenf) andmatrix_bhas shapen, k), the result has shapé.(Element
(j) of the result has the value SUitrix_&(:) * matrix_K:, j)) if the arguments are of
numeric type and has the value ANIYdtrix_g(:) * matrix_H:, j)) if the arguments are of type
LOGICAL.

If matrix_ahas shapen(m) andmatrix_bhas shapenf), the result has shape)(Element
(i,) of the result has the value SUditrix_gi, :) * matrix_K(:)) if the arguments are of
numeric type and has the value ANIYdtrix_g(i, :) * matrix_I(:)) if the arguments are of type
LOGICAL.

Lahey Fortran 90 Language Reference

MAX Function

Example
integer a(2,3), b(3), c(2)
a = reshape((/1,2,3,4,5,6/), (/2,3/))
! represents |1 3 5|
1246
b=(/1,2,3)) I represents [1,2,3]
c =matmul(a, b) ! c=1[22,28]

MAX Function

Description
Maximum value.

Syntax
MAX (al, a2 a3, ..)

Arguments

The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.

Result

The result is of the same type and kind as the arguments. Its value is the value of the largest

argument.

Example
k = max(-14,3,0,-2,19,1) ! k is assigned the value 19

MAXEXPONENT Function

Description
Maximum binary exponent of data type.

Syntax
MAXEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Lahey Fortran 90 Language Reference 167

Chapter 2 Alphabetical Reference

Result

The result is a scalar default INTEGER. Its value is the largest permissible binary exponent
in the data type of.

Example
real :: r
integer :: i

i = maxexponent (r) !iis assigned the value 128

MAXLOC Function

Description

Location of the first element iarray having the maximum value of the elements identified
by mask

Syntax
MAXLOC (array, dim, mash

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dim must be a scalar INTEGER in the rarfgg dim< n , windsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Result

The result is of type default INTEGER.ntfaskis absent, the result is a rank one array whose
element values are the values of the subscripts of the first elensrayrto have the max-
imum value of all of the elements afray. If maskis present, the elementsafay for

which maskis false are not considered.

Example

integer, dimension(1) :: i
i = maxloc ((/3,0,4,4/)) !'i is assigned the value [3]

168 Lahey Fortran 90 Language Reference

MAXVAL Function

MAXVAL Function

Description
Maximum value of elements of an array, along a given dimension, for which a mask is true.

Syntax
MAXVAL (array, dim, mask

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dimmust be a scalar INTEGER in the rarfgg dim< n , wingsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Result
The result is of the same type and kingaay. It is scalar ifdimis absent or irray has
rank one; otherwise the result is an array of r&dkand of shape

(dq, dy, ..., Agim—1, Agim+ 1 ---» d,) where (d;, d,, ..., d,) is the shape afray. If dim
is absent, the value of the result is the maximum value of all the elemantayofIf dimis
present, the value of the result is the maximum value of all elemeatsagfalong dimen-
siondim. If maskis present, the elementsasfay for whichmaskis false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/12,2/))
I'mis the array |1 3|

! |2 4
i = maxval(m) l'iis assigned 4
j = maxval(m,dim=1) !jis assigned [2,4]

k = maxval(m,mask=m<3) ! k is assigned 2

MERGE Function

Description
Choose alternative values based on the value of a mask.

Lahey Fortran 90 Language Reference 169

Chapter 2 Alphabetical Reference

Syntax
MERGE tsource fsource masR

Arguments
tsourcecan be of any type.

fsourcemust be of the same type and type parametdspase

maskmust be of type LOGICAL.

Result

The result is of the same type and type parametéspace Its value igsourceif maskis
true,andfsourceotherwise.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/12,2/))
integer, dimension (2,2) :: n = reshape((/3,3,3,3/),(/2,2/))
I'mis the array |1 3|
! |2 4
I'nis the array |3 3|
! [3 3]
r = merge(m,n,m<n) ! r is assigned (/1,2,3,3/)

MIN Function

Description
Minimum value.

Syntax
MIN (al, a2 a3, ..)

Arguments

The arguments must be of type INTEGER or REAL and must all be of the same type and
kind.

Result
The result is of the same type and kind as the arguments. Its value is the value of the smallest

argument.

Example
k =min(-14,3,0,-2,19,1) ! k is assigned the value -14

170 Lahey Fortran 90 Language Reference

MINEXPONENT Function

MINEXPONENT Function

Description
Minimum binary exponent of data type.

Syntax
MINEXPONENT (x)

Arguments
x must be of type REAL. It can be scalar or array-valued.

Result

The result is a scalar default INTEGER. Its value is the most negative permissible binary
exponent in the data type xf

Example
real ::r
integer :: i

i = minexponent (r) !iis assigned the value -126

MINLOC Function

Description

Location of the first element iarray having the minimum value of the elements identified
by mask

Syntax
MINLOC (array, dim, masR

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments

dimmust be a scalar INTEGER in the rarfgg dim< n , wingsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Lahey Fortran 90 Language Reference 171

Chapter 2 Alphabetical Reference

MINVAL

Result

The result is of type default INTEGER.ntfaskis absent, the result is a rank one array whose
element values are the values of the subscripts of the first elenzgrayrio have the min-
imum value of all of the elements afray. If maskis present, the elementsafay for

which maskis false are not considered.

Example
integer, dimension(1) :: i
i = minloc ((/3,0,4,4/)) ! i is assigned the value [2]

Function

Description
Minimum value of elements of an array, along a given dimension, for which a mask is true.

Syntax
MINVAL (array, dim, mask

Required Arguments
array must be of type INTEGER or REAL. It must not be scalar.

Optional Arguments
dim must be a scalar INTEGER in the rarfgg dim< n , windsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Result
The result is of the same type and kindaay. It is scalar idimis absent or iarray has
rank one; otherwise the result is an array of rakand of shape

(dq, dy, ..., Agim—1 dgim+ 1 -+-» dy) where (dq, d,, ..., d,) is the shape afray. If dim
is absent, the value of the result is the minimum value of all the elememtayf If dimis
present, the value of the result is the minimum value of all elemesnisagfalong dimension
dim. If maskis present, the elementsafay for whichmaskis false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/12,2/))
I'mis the array |1 3|

! |2 4]
i = minval(m) liis assigned 1
j = minval(m,dim=1) !jis assigned [1,3]

k = minval(m,mask=m>3) ! k is assigned 4

172 Lahey Fortran 90 Language Reference

MOD Function

MOD Function

Description
Remainder.

Syntax
MOD (a, p)

Arguments
a must be of type INTEGER or REAL.
p must be of the same type and kindhadts value must not be zero.

Result
The result is the same type and kincgadts value isa- INT(a/ p) * p.

Example
r = mod(23.4,4.0) ! r is assigned the value 3.4
i =mod(-23,4) !iis assigned the value -3
j=mod(23,-4) !jis assigned the value 3

k =mod(-23,-4) !kis assigned the value -3

MODULE Statement

Description
The MODULE statement begins a module program unit.

Syntax
MODULE module-name

Where:
module-namés the name of the module.

Remarks

The module name must not be the same as the name of another program unit, an external pro-
cedure, or a common block within the executable program, nor be the the same as any local
name in the module.

In Lahey Fortran, a module program unit must be compiled before it is used.

Lahey Fortran 90 Language Reference 173

Chapter 2 Alphabetical Reference

Example
module m
implicit none
type mytype ! mytype available anywhere m is used
real :: a, b(2,4)

integer :: n,0,p
end type mytype
end module m
subroutine zee ()
usem
implicit none
type (mytype) bee, dee

end subroutine zee

MODULE PROCEDURE Statement

Description
The MODULE PROCEDURE statement specifies that the names matiele-procedure-
list are part of a generic interface.

Syntax
MODULE PROCEDURENodule-procedure-list

Where:
module-procedure-liss a list of module procedures accessible by host or use association.

Remarks
A MODULE PROCEDURE statement can only appear in a generic interface block within a
module or within a program unit that accesses a module by use association.

174 Lahey Fortran 90 Language Reference

MODULO Function

Example

module names
implicit none
interface bill

module procedure fred, jim

end interface
contains
function fred ()

end function fred
function jim ()

end function jim
end module names

MODULO Function

Description
Modulo.

Syntax
MODULO (a, p)

Arguments
a must be of type INTEGER or REAL.

p must be of the same type and kindhadts value must not be zero.

Result

The result is the same type and kincgadf a is a REAL, the result value &- FLOOR@/
p) * p. Ifais an INTEGER, MODULGH, p) has the value such thaa =q* p +r, whereq
is an INTEGER and is nearer to zero thgn

Example
r = modulo(23.4,4.0) ! r is assigned the value 3.4
i =modulo(-23,4) !iis assigned the value 1
j =modulo(23,-4) !jis assigned the value -1
k - modulo(-23,-4) !k is assigned the value -3

Lahey Fortran 90 Language Reference 175

Chapter 2 Alphabetical Reference

MVBITS Subroutine

Description
Copy a sequence of bits from one INTEGER data object to another.

Syntax
MVBITS (from, frompos len, to, topog

Arguments
from must be of type INTEGER. Itis an INTENT(IN) argument.

fromposmust be of type INTEGER and must be non-negative. Itis an INTENT(IN) argu-
ment. frompos+ len must be less than or equal to BIT_SIZ&i().

len must be of type INTEGER and must be non-negative. Itis an INTENT(IN) argument.

to must be a variable of type INTEGER with the same kirfdoas. It can be the same vari-
able adfrom. Itis an INTENT(IN OUT) argumentto is set by copyinden bits, starting at
positionfromposfrom from,to to, starting at positiotopos

toposmust be of type INTEGER and must be non-negative. Itis an INTENT(IN) argument.
topos+ len must be less than or equal to BIT_SI#(

Example
i=17;j=3
call mvbits (i,3,3,j,1) ! j is assigned the value 5

NAMELIST Statement

176

Description

The NAMELIST statement specifies a list of variables which can be referred to by one name
for the purpose of performing input/output.

Syntax
NAMELIST /namelist-namenamelist-group [[] /namelist-namiamelist-group]

Where:
namelist-namés the name of a namelist group.

namelist-grougs a list of variable names.

Lahey Fortran 90 Language Reference

NBREAK Subroutine

Remarks

A name in anamelist-groupmust not be the name of an array dummy argument with a non-
constant bound, a variable with a non-constant character length, an automatic object, a
pointer, a variable of a type that has an ultimate component that is a pointer, or an allocatable
array.

If a namelist-naménas the public attribute, no item in themelist-groupcan have the PRI-
VATE attribute.

The order in which the variables appear in a NAMELIST statement determines the order in
which the variables’ values will appear on output.

Example
namelist /mylist/ x, y, z

NBREAK Subroutine

Description
Ignore break interrupts.

Syntax
NBREAK ()

Remarks

The NBREAK subroutine causes the system to ignore break interaqutis@> or

<Ctrl-Break>) during execution of the program. If a break is received during console
input/output, some data may be lost and an error may result. The error may be trapped using
the ERR= or IOSTAT= specifier in the input/output statement.

To return to the system default handling of break interrupts or to capture break interrupts, use
the BREAK subroutine (se®REAK Subroutine”beginning on page 75).

Example
call nbreak () !ignore break interrupts

NDPERR Function

Description
Report floating point exceptions.

Lahey Fortran 90 Language Reference 177

Chapter 2 Alphabetical Reference

Syntax
NDPERR (var)

Arguments
Ivar must be of type LOGICAL. Ivaris true, NDPERR clears floating-point exception bits.
If lvar is false, NDPERR does not clear floating-point exception bits.

Result
The result is of type default INTEGER. Its value is the INTEGER value of the combination
of the following bits, where a bit set to one indicates an exception has occurred:

Table 10: NDPERR bits

Bit Exception

Invalid Operation

Denormalized Number

Divide by Zero

Overflow

Underflow

Al W[N] P | O

Example
exc = ndperr (.true.)
I exc is assigned the bits for floating-point exceptions
I that have occurred. Exception bits are cleared.

NDPEXC Subroutine

Description
Mask all floating point exceptions.

Remarks
To mask specific exceptions use the subroutines INVALOP (invalid operator), OVEFL

(overflow), UNDFL (underflow), and DVCHK (divide by zero).

The precision exception is always masked.

Example
call ndpexc () ! mask floating-point exceptions

178 Lahey Fortran 90 Language Reference

NEAREST Function

NEAREST Function

Description
Nearest number of a given data type in a given direction.

Syntax
NEAREST , 9)

Arguments

x must be of type REAL.

s must be of type REAL and must be non-zero.
Result

The result is of the same type and kinckadts value is the nearest distinct number, in the
data type ok, from x in the direction of the infinity with the same signsas

Example
a = nearest (34.3, -2.0) ! a is assigned 34.2999954223624

NINT Function

Description
Nearest INTEGER.

Syntax
NINT (&, kind)

Required Arguments
a must be of type REAL.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result
The result is of type INTEGER. Kindis present the result kindkind; otherwise it is the
default INTEGER kind. I&> 0, the result has the value

INT(a + 0.5); ifa< 0, the result has the value INIH0.5).

Lahey Fortran 90 Language Reference 179

Chapter 2 Alphabetical Reference

Example
i =nint (7.73) !iis assigned the value 8
i =nint (-4.2) !iis assigned the value -4
i =nint (-7.5) !iis assigned the value -8
i =nint (2.50) !iis assigned the value 3

NOT Function

Description
Bit-wise logical complement.

Syntax
NOT (i)

Arguments
i must be of type INTEGER.

Result

The result is of the same type and kind.aks value is the value ofwvith each of its bits
complemented (zeros changed to ones and ones changed to zeros).

Example
i =not(5) !i is assigned the value -6

NULLIFY Statement

Description
The NULLIFY statement disassociates pointers.

Syntax
NULLIFY (pointers)

Where:

pointersis a comma-separated list of variables or structure components having the POINTER
attribute.

180 Lahey Fortran 90 Language Reference

OFFSET Function

Example
real, pointer :: a, b, ¢
real, target :: t, u, v
a=>t; b=>u; c=>v !a, b, and c are associated
nullify (a, b, ¢) ! a, b, and c are disassociated

OFFSET Function

Description
Get the DOS offset portion of the memory address of a variable, substring, array reference,
or external subprogram.

Syntax
OFFSET {tem)

Arguments
itemcan be of any type. It is the name for which to return an offieesh must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the offset portion of the memory addréssrof

Example
i = offset(a) ! get the offset portion of the address of a

OPEN Statement

Description
The OPEN statement connects or reconnects an external file and an input/output unit.

Lahey Fortran 90 Language Reference 181

Chapter 2 Alphabetical Reference

182

Syntax
OPEN ¢onnect-spegs

Where:

connect-specis a comma-separated list of
[UNIT =] external-file-unit

or IOSTAT =iostat

or ERR =label

or FILE =file-name-expr

or STATUS =status

or ACCESS =access

or FORM =form

or RECL =recl

or BLANK = blank

or POSITION =position

or ACTION =action

or DELIM =delim

or PAD =pad

or BLOCKSIZE =blocksize

or CARRIAGECONTROL =carriagecontrol

external-file-unitis a scalar INTEGER expression that evaluates to the input/output unit
number of an external file.

file-name-expis a scalar CHARACTER expression that evaluates to the name of a file.

iostatis a scalar default INTEGER variable that is assigned a positive value if an error con-
dition occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

labelis the statement label of the statement that is branched to if an error occurs.

statusis a scalar default CHARACTER expression. It must evaluate to NEW if the file does
not exist and is to be created; REPLACE if the file is to overwrite an existing file of the same
name or create a new one if the file does not exist; SCRATCH if the file is to be deleted at
the end of the program or the execution of a CLOSE statement; OLD, if the file is to be
opened but not replaced; and UNKNOWN otherwise. The default is UNKNOWN.

accessds a scalar default CHARACTER expression. It must evaluate to SEQUENTIAL if
the file is to be connected for sequential access, DIRECT if the file is to be connected for
direct accesggr TRANSPARENT if the file is to be connected for transparent accHss
default value is SEQUENTIAL

formis a scalar default CHARACTER expression. It must evaluate to FORMATTED if the
file is to be connected for formatted input/output, and UNFORMATTED if the file is to be
connected for unformatted input/output. The default value is UNFORMATTED, for a file
connected for direct access, and FORMATTED, for a file connected for sequential access.

Lahey Fortran 90 Language Reference

OPEN Statement

reclis a scalar default INTEGER expression. It must evaluate to the record length for a file
connected for direct access, or the maximum record length for a file connected for sequential
access.

blankis a scalar default CHARACTER expression. It must evaluate to NULL if null blank
control is to be used and ZERO if zero blank control is to be used. The default value is
NULL. This specifier is only permitted for a file being connected for formatted input/output.

positionis a scalar default CHARACTER expression. It must evaluate to REWIND if the
newly opened sequential access file is to be positioned at its initial point; APPEND if it is to
be positioned before the endfile record if one exists and at the file terminal point otherwise;
and ASIS if the position is to be left unchanged. The default is ASIS.

actionis a scalar default CHARACTER expression. It must evaluate to READ if the file is
to be connected for input only, WRITE if the file is to be connected for output only, and
READWRITE if the file is to be connected for input and output. The default value is READ-
WRITE. Sharing modes may also be specified. The are "DENYBOTH" if the file is for
exclusive use by this unit in this process; "DENYWRITE" if the file may be read by others,
but not written to; "DENYREAD" if the file may be written to by others, but not read; and
"DENYNONE" if the file may be read or written to by others. If both access modes (READ,
WRITE, or READWRITE) and sharing modes are to be specified, they must be separated by
a comma within the same character expression.

delimis a scalar default CHARACTER expression. It must evaluate to APOSTROPHE if
the apostrophe will be used to delimit character constants written with list-directed or namel-
ist formatting, QUOTE if the quotation mark will be used, and NONE if neither quotation
marks nor apostrophes will be used. The default value is NONE. This specifier is permitted
only for formatted files and is ignored on input.

padis a scalar default CHARACTER expression. It must evaluate to YES if the formatted
input record is to be padded with blanks and NO otherwise. The default value is YES.

blocksizeis a scalar default INTEGER expression. It must evaluate to the size, in bytes, of
the input/output buffer.

carriagecontrolis a scalar default CHARACTER expression. It must evaluate to FORTRAN
if the first character of a formatted sequential record is to be used for carriage control, and
LIST otherwise. Non-storage devices default to FORTRAN; disk files to LIST

Remarks

The OPEN statement can be used to connect an existing file to an input/output unit, create a
file that is preconnected, create a file and connect it to an input/output unit, or change certain
characteristics of a connection between a file and an input/output unit.

If the optional characters UNIT= are omitted from the unit specifier, the unit specifier must
be the first item in the connect-spec-list.

Lahey Fortran 90 Language Reference 183

Chapter 2 Alphabetical Reference

If the file to be connected to the input/output unit is the same as the file to which the unit is
already connected, only the BLANK=, DELIM=, PAD=, ERR=, and IOSTAT= specifiers
can have values different from those currently in effect.

If a file is already connected to an input/output unit, execution of an OPEN statement on that
file and a different unit is not permitted.

FILE= is optional if it is the second argument and the first argument is a unit number with no
UNIT=.

Example
open (8, file="info.dat',status="new’)

OPTIONAL Statement

Description

The OPTIONAL statement specifies that any of the dummy arguments specified need not be
associated with an actual argument when the procedure is invoked.

Syntax
OPTIONAL [::] dummy-arg-names

Where:
dummy-arg-nameis a comma-separated list of dummy argument names.

Example
subroutine a(b,c)
real, optional, intent(in) :: c
! ¢ need not be provided when calling a
real, intent(out) :: b

OVEFL Subroutine

184

Description

The initial invocation of the OVEFL subroutine masks the overflow interrupt on the floating-
point unit. Iflag must be set to true on the first invocation. Subsequent envocations return
true or false in théflag variable if the exception has occurred or not occurred, respectively.

Lahey Fortran 90 Language Reference

PACK Function

Syntax
OVEFL (flag)

Arguments

Iflag must be of type LOGICAL. Itis assigned the value true if an overflow exception has
occurred, and false otherwise.

Example
call ovefl (Iflag) ! mask the overflow interrupt

PACK Function

Description
Pack an array into a vector under control of a mask.

Syntax
PACK (array, mask vectol)

Required Arguments
array can be of any type. It must not be scalar.

maskmust be of type LOGICAL and must be conformable \aittay.

Optional Arguments

vectormust be of the same type and kindhersly and must have rank one. It must have at
least as many elements as there are true elements in amagskié scalar with value true,
vectormust have at least as many elementresy.

Result

The result is an array of rank one with the same type and kentlags If vectoris present,

the result size is the sizewdctor If vectoris absent, the result size is the number of true
elements imaskunlessmaskis scalar with the value true, in which case the size is the size
of array.

The value of elemembf the result is thah true element ahask in array-element order. If
vectoris present and is larger than the number of true elememigsk the elements of the
result beyond the number of true elementaaskare filled with values from the correspond-
ing elements ofector

Lahey Fortran 90 Language Reference 185

Chapter 2 Alphabetical Reference

Example
integer, dimension(3,3) :: ¢
¢ =reshape((/0,3,2,4,3,2,5,1,2/),(/3,3/))
I represents the array [0 4 5|
! [331]
! 222
integer, dimension(6) :: d
integer, dimension(9) :: e
d = pack(c,mask=c.ne.2)! d is assigned [0 34 3 5 1]
e = pack(c,mask=.true.)! e is assigned[03243251 2]

PARAMETER Statement

Description
The PARAMETER statement specifies named constants.

Syntax

PARAMETER (amed-constant-defs

Where:
named-constant-defs a comma separated listafnstant-name init-expr

constant-namés the name of a constant being specified.
init-expris an expression that can be evaluated at compile time.

Remarks
Each named constant becomes defined with the valné-ekpr.

Example
parameter (freezing_point = 32.0, conv_factor = 9/5)

PAUSE Statement (obsolescent)

186

Description
The PAUSE statement temporarily suspends execution of the program.

Syntax
PAUSE[pause-code]

Where:
pause-codés a scalar CHARACTER constant or a series of 1 to 5 digits.

Lahey Fortran 90 Language Reference

Pointer Assignment Statement

Remarks

When a PAUSE statement is reached, the optjmmage-codand the stringPressenter

to continue " are displayed. The program resumes execution whetEetheER>key is
pressed.

Example
pause !"Press enter to continue" is displayed

Pointer Assignment Statement

Description
The pointer assignment statement associates a pointer with a target.

Syntax
pointer=> target

Where:
pointeris a variable having the POINTER attribute.

targetis a variable or expression having the TARGET attribute or the POINTER attribute or
a subobject of a variable having the TARGET attribute.

Remarks

If targetis not a pointempointerbecomes associated witlrget If targetis a pointer that is
associatedpointerbecomes associated with the same objetzrgst. If targetis disassoci-
ated,pointerbecomes disassociated.tdfgets association status is undefingapinters
also becomes undefined.

Pointer assignment of a pointer component of a structure can also take place by derived type
intrinsic assignment or by a defined assignment.

A pointer also becomes associated with a target through allocation of the pointer.
Any previous association betwepainterand a target is broken.
targetmust be of the same type, kind, and rangaster.
targetmust not be an array section with a vector subscript.
If targetis an expression, it must deliver a pointer result.
Example
real, pointer :: a

real, target :: b =5.0
a=>b laisan alias forb

Lahey Fortran 90 Language Reference 187

Chapter 2 Alphabetical Reference

POINTER Function

Description
Get the memory address of a variable, substring, array reference, or external subprogram.

Syntax
POINTER (tem)

Arguments

itemcanbe of any type. Itis the name for which to return an addiess.must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the addresgerh

Example
i = pointer(a) ! get the address of a

POINTER Statement

Description
The POINTER statement specifies a list of variables that have the POINTER attribute.

Syntax

POINTER] ::] variable-name (deferred-shapg [, variable-name (deferred-
shap@]] ...

Where:
variable-namds the name of a variable.

deferred-shapés :[, ;] ... where the number of colons is equal to the rankagfble-name.

Remarks

A pointer must not be referenced or defined unless it is first associated with a target through
a pointer assignment or an ALLOCATE statement.

The INTENT attribute must not be specified fariable-name

If the DIMENSION attribute is specified elsewhere in the scoping unit, the array must have
a deferred shape.

188 Lahey Fortran 90 Language Reference

PRECFILL Subroutine

Example
real :: next, previous, value
pointer :: next, previous

PRECFILL Subroutine

Description

Set fill character for numeric fields that are wider than supplied numeric precision. The
default is '0'.

Syntax
PRECFILL ilchar)

Arguments
filchar must be of type CHARACTER. Itis an INTENT(IN) argument whose first character

becomes the new precision fill character.

Example
call precfill('*") ! ™ is the new precision fill character

PRECISION Function

Description
Decimal precision of data type.

Syntax
PRECISION ¥)

Arguments
x must be of type REAL or COMPLEX.

Result

The result is of type default INTEGER. Its value is equal to the number of decimal digits of
precision in the data type »f

Lahey Fortran 90 Language Reference 189

Chapter 2 Alphabetical Reference

Example

i = precision (4.2) !'i is assigned the value 6

PRESENT Function

Description
Determine whether an optional argument is present.

Syntax
PRESENT &)

Arguments

a must be an optional argument of the procedure in which the PRESENT function appears.

Result

The result is a scalar default LOGICAL. Its value is true if the actual argument correspond-
ing toa was provided in the invocation of the procedure in which the PRESENT function
appears and false otherwise.

Example

call zee(a, b)

subroutine zee (x,y,z)
implicit none
real, intent(in out) :: X, y
real, intent (in), optional :: z

r = present(z) ! r is assigned the value false

PRINT Statement

Description

The PRINT statement transfers values from an output list to an input/output unit.

190 Lahey Fortran 90 Language Reference

PRINT Statement

Syntax
PRINT format [, outputs]

Where:

formatis format-expr
or label

or*

or assigned-label

format-expris a default CHARACTER expression that evaluatefféonjat-items)
labelis a statement label of a FORMAT statement.

assigned-labels a scalar default INTEGER variable that was assigned the label of a FOR-
MAT statement in the same scoping unit.

outputsis a comma-separated listexpr
or io-implied-do

expris an expression.
io-implied-dois (outputs implied-do-contro)
implied-do-controlis do-variable= start, end [, increment]

start, end andincrementre scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis a scalar variable of type INTEGER, REAL or double-precision REAL.

format-itemds a comma-separated lisfgfata-edit-descriptor control-edit-descriptaror
char-string-edit-descriptqror [r] (format-item$

data-edit-descriptors Iw[.m]
or Bw[.m]

or Ow[.m]

or Zw[.m]

or Fw.d

or BEw.d[Ee]
or ENw.d[Ee€]
or ESwv.d[Ee]
or Gw.d[Ee]
or Lw

or Ajw]

or Dw.d

w, m, d, ande are INTEGER literal constants that represent field width, digits, digits after the
decimal point, and exponent digits, respectively

Lahey Fortran 90 Language Reference 191

Chapter 2 Alphabetical Reference

192

control-edit-descriptois Tn
or TLn
or TRn
or nX
orS
or SP
or SS
or BN
or BZ
or[r]/
or:

or kP

char-string-edit-descriptors a CHARACTER literal constant oHrep-chars
rep-charsis a string of characters
c is the number of charactersrap-chars

r, k, andn are positive INTEGER literal constants that are used to specify a number of repe-
titions of thedata-edit-descriptor¢char-string-edit-descriptgrcontrol-edit-descriptaror
(format-item$

Remarks

Thedo-variableof animplied-do-controthat is contained within anothierimplied-domust
not appear as trap-variableof the containingo-implied-da

If an array appears as an output item, it is treated as if the elements are specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components are
specified in the same order as in the definition of the derived type.

The comma used to separate itemf®imat-itemsan be omitted between a P edit descriptor
and an immediately following F, E, EN, ES, D, or G edit descriptor; before a slash edit
descriptor when the optional repeat specification is not present; after a slash edit descriptor;
and before or after a colon edit descriptor.

Within a CHARACTER literal constant, if an apostrophe or quotation mark appears, it must
be as a consecutive pair without any blanks. Each such pair represents a single occurence of
the delimiter character.

Example
print*,"hello world"
print 100, i,j,k
100 format (3i8)

Lahey Fortran 90 Language Reference

PRIVATE Statement

PRIVATE Statement

Description
The PRIVATE statement specifies that the names of entities are accessible only within the
current module.

Syntax

PRIVATE[[::] access-ids]
Where:
access-idés a comma-separated list of
use-name

or generic-spec
use-namés a name previously declared in the module.

generic-speds generic-name
or OPERATOR defined-operator
or ASSIGNMENT (=)

generic-names the name of a generic procedure.

defined-operatois one of the intrinsic operators
or op-name

op-names a user-defined name for the operation.

Remarks

The PRIVATE statement is permitted only in a module. If the PRIVATE statement appears
without a list of objects, it sets the default accessibility of named items in the module to pri-
vate. Otherwise, it makes the accessibility of the objects specified private.

If the PRIVATE statement appears in a derived type definition, the entities within the derived
type definition are accessible only in the current module. Within a derived type definition,
the PRIVATE statement must not appear with a listaafess-id.

Example
module ex
implicit none
public ! default accessibility is public
real :a, b, c
private a ! a is not accessible outside module
' b and c are accessible outside module
type zee
private
integer :: I,m !l and m are private
end type zee
end module ex

Lahey Fortran 90 Language Reference 193

Chapter 2 Alphabetical Reference

PRODUCT Function

Description
Product of elements of an array, along a given dimension, for which a mask is true.

Syntax
PRODUCT érray, dim, mash

Required Arguments
array must be of type INTEGER, REAL or COMPLEX. It must not be scalar.

Optional Arguments

dim must be a scalar INTEGER in the rarfbg dim< n , wingsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Result

The result is of the same type and kingaay. It is scalar ifdimis absent or irray has
rank one; otherwise the result is an array of r&dkand of shape

(dq, dy, ..., Agim—1, Agim+ 1 ---» d,) where (dq, d,, ..., d,) is the shape afray. If dim
is absent, the value of the result is the product of the values of all the elememnéy.off
dimis present, the value of the result is the product of the values of all elemantsyof
along dimensiomim. If maskis present, the elementsafay for whichmaskis false are
not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/12,2/))
I'mis the array |1 3|
! 12 4|
i = product(m) l'iis assigned 24
j = product(m,dim=1) !jis assigned [2,12]
k = product(m,mask=m>2) ! k is assigned 12

PROGRAM Statement

Description
The PROGRAM statement specifies a hame for the main program unit.

194 Lahey Fortran 90 Language Reference

PROMPT Subroutine

Syntax
PROGRAMprogram-name

Where:
program-namas the name given to the main program.

Remarks

program-namas global to the entire executable program. It must not be the same as the
name of another program unit, external procedure, or common block in the executable pro-
gram, nor the same as any local name in the main program.

Example
program zyx

PROMPT Subroutine

Description
Set prompt for subsequent READ statements. Fortran default is no prompt.

Syntax
PROMPT (nessage

Arguments
messagenust be of type CHARACTER. lItis an INTENT(IN) argument that is the prompt

for subsequent READ statements.

Example
call prompt('?’) ! ? is the new READ prompt

PUBLIC Statement

Description

The PUBLIC statement specifies that the names of entities are accessible anywhere the mod-
ule in which the PUBLIC statement appears is used.

Lahey Fortran 90 Language Reference 195

Chapter 2 Alphabetical Reference

Syntax
PUBLIC [[::] access-ids]

Where:
access-idss a comma-separated listude-name
or generic-spec

use-namés a name previously declared in the module.

generic-speds generic-name
or OPERATOR defined-operatdr
or ASSIGNMENT (=)

generic-namés the name of a generic procedure.

defined-operatois one of the intrinsic operators
or op-name

op-namsds a user-defined name for the operation.

Remarks

The PUBLIC statement is permitted only in a module. The default accessibility of names in

amodule is public. If the PUBLIC statement appears without a list of objects, it confirms the

default accessibility. If a list of objects is present, the PUBLIC statement makes the acces-
sibility of the objects specified public.

Example
module zee
implicit none
private ! default accessibility is now private
real ::a, b, c
public a ! a is now accessible outside module
end module zee

RADIX Function

196

Description
Number base of the physical representation of a number.

Syntax
RADIX (x)

Arguments
x must be of type INTEGER or REAL.

Lahey Fortran 90 Language Reference

RANDOM_NUMBER Subroutine

Result

The result is a default INTEGER scalar whose value is the number base of the physical rep-
resentation ok. In Lahey Fortran 90 this value is two for all kinds of INTEGERs and

REALs.

Example
i =radix(2.3) !i is assigned the value 2

RANDOM_NUMBER Subroutine

Description
Uniformly distributed pseudorandom number or numbers in the rAnge< 1

Syntax
RANDOM_NUMBER (harves)

Arguments

harvestmust be of type REAL. Itis an INTENT(OUT) argument. It can be a scalar or an
array variable. Its value is one or several pseudorandom numbers uniformly distributed in
the range0<x<1

Example
real, dimension(8) :: x
call random_number(x) ! each element of x is assigned
I 'a pseudorandom number

RANDOM_SEED Subroutine

Description
Set or query the pseudorandom number generator used by RANDOM_NUMBER. If no
argument is present, the processor sets the seed to a predetermined value.

Syntax
RANDOM_SEED 6ize put, ged

Optional Arguments

sizemust be a scalar of type default INTEGER. Itis an INTENT(OUT) variable. Itis setto
the number of default INTEGERS the processor uses to hold the seed. For Lahey Fortran this
value is two.

Lahey Fortran 90 Language Reference 197

Chapter 2 Alphabetical Reference

putmust be a default INTEGER array of rank one and size greater than or esjgel tbis
an INTENT(IN) argument and is used by the processor to set the seed value.

getmust be a default INTEGER array of rank one and size greater than or exjgal tbis
an INTENT(OUT) argument and is set by the processor to the current value of the seed.

Exactly one or zero arguments must be present.

Example
call random_seed !initialize the generator
call random_seed(size=k) ! k set to size of seed
call random_seed(put=seed(1:k)) ! set user seed
call random_seed(get=old(1:k)) ! get current seed

RANGE Function

Description
Decimal range of the data type of a number.

Syntax
RANGE (x)

Arguments
X must be of humeric type.

Result

The result is a scalar default INTEGER X i of type INTEGER, the result value is INT
(LOG10 hugsg), wherehugeis the largest positive integer in the data type df x is of type
REAL or COMPLEX, the result value is INT (MIN (LOG1Byg8, - LOG10 (iny))), where
hugeandtiny are the largest and smallest positive numbers in the data type of

Example
i =range(4.2) !i is assigned the value 37

READ Statement

Description

The READ statement transfers values from an input/output unit to the entities specified in an
input list or a namelist group.

198 Lahey Fortran 90 Language Reference

READ Statement

Syntax
READ (io-control-speck[inputs]

or
READ format[, inputs]

Where:
inputsis a comma-separated list\adriable
or io-implied-do

variableis a variable.
io-implied-dois (inputs implied-do-contro)
implied-do-controlis do-variable= start, end [, increment]

start, end andincrementre scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specds a comma-separated list of
[UNIT =] io-unit

or[FMT =] format

or [NML =] namelist-group-name
or REC =record

or IOSTAT =stat

or ERR =errlabel

or END =endlabel

or EOR =eorlabel

or ADVANCE =advance

or SIZE =size

io-unit is an external file unit
or*

formatis a format specification (sémput/Output Editing” beginning on page 24).
namelist-group-namis the name of a namelist group.
recordis the number of the direct access record that is to be read.

statis a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

errlabel is a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabelis a label that is branched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

Lahey Fortran 90 Language Reference 199

Chapter 2 Alphabetical Reference

eorlabelis a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advancds a scalar default CHARACTER expression that evaluates to NO if non-advancing
input/output is to occur, and YES if advancing input/output is to occur. The default value is
YES.

sizeis a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output
statement.

Remarks

io-control-specsnust contain exactly orie-unit, and must not contain botH@matand a
namelist-group-name

A namelist-group-nammust not appear ifputsis present.

If the optional characters UNIT= are omitted befior@nit, io-unit must be the first item in
io-control-specs If the optional characters FMT= are omitted beformat formatmust be
the second item iio-control-specs If the optional characters NML= are omitted before
namelist-group-nameamelist-group-nameust be the second itemiatcontrol-specs

If io-unitis an internal fileio-control-specenust not contain a REC= specifier aramelist-
group-name

If the REC= specifier is present, an END= specifier must not appeamelist-group-name
must not appear, arfidrmat must not be an asterisk indicating list-directed 1/0.

An ADVANCE-= specifier can appear only in formatted sequential I/O with an explicit for-
mat specificationformat-exp) whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
the value NO.

Thedo-variableof animplied-do-controthat is contained within anothierimplied-domust
not appear as thdp-variableof the containingo-implied-da

Example

read*, a,b,c !read into a, b, and c using list-
I directed i/o

read (3, fmt="(e7.4)") x
!'read in x from unit 3 using e format

read 10, i,j,k
I'read in i, j, and k using format at
I'label 10

200 Lahey Fortran 90 Language Reference

REAL Function

REAL Function

Description
Convert to REAL type.

Syntax
REAL (a, kind)

Required Arguments
a must be of type INTEGER, REAL, or COMPLEX.

Optional Arguments
kind must be a scalar INTEGER expression that can be evaluated at compile time.

Result

The resultis of type REAL. Kindis present, the kind is that specifieddiyd. The result’s
value is a REAL representationaf If ais of type COMPLEX, the result’s value is a REAL
representation of the real parteof

Example
b =real(-3) ! b is assigned the value -3.0

REAL Statement

Description
The REAL statement declares entities of type REAL.

Syntax
REAL [kind-selector] [[, attribute-list] ::] entity [, entity] ...

Where:

kind-selectoiis ([KIND =] scalar-int-initialization-expr)

scalar-int-initialization-expiis a scalar INTEGER expression that can be evaluated at com-
pile time.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-nam¢ (array-speg] [= initialization-expr]
or function-name (array-speg]

Lahey Fortran 90 Language Reference 201

Chapter 2 Alphabetical Reference

202

array-speds an array specification.

initialization-expris an expression that can be evaluated at compile time.
entity-namas the name of a data object being declared.

function-namas the name of a function being declared.

Remarks

The same attribute must not appear more than once in a REAL statement.

function-namenust be the name of an external, intrinsic, or statement function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the ksitiies Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear gntity-names a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in a blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

Lahey Fortran 90 Language Reference

REPEAT Function

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-spedor afunction-nameéhat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entity must not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a REAL statement must not have the EXTERNAL or INTRINSIC attribute spec-
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.
An entity must not be explicitly given any attribute more than once in a scoping unit.
Example

real::a, b, c l'a, b, and c are of type real

real, dimension (2, 4) :: d

Idis a2 hby4array of real
real::e=2.0 I real e is initialized

REPEAT Function

Description
Concatenate copies of a string.

Lahey Fortran 90 Language Reference 203

Chapter 2 Alphabetical Reference

Syntax
REPEAT 6tring, ncopie$

Arguments
string must be scalar and of type CHARACTER

ncopiesmust be a scalar non-negative INTEGER.

Result
The result is a scalar of type CHARACTER with length equattipiestimes the length of
string. Its value is equal to the concatenatiomadpiescopies ofstring.

Example
character (len=6) :: n
n = repeat('ho’,3) ! n is assigned the value 'hohoho'

RESHAPE Function

Description
Construct an array of a specified shape from a given array.

Syntax
RESHAPE $ource shape pad, order)

Required Arguments
sourcecan be of any type and must be array-valuegadfis absent or of size zero, the size
of sourcemust be greater than or equal to the product of the values of the elensatgef

shapemust be an INTEGER array of rank one and of constant size. Its size must be positive
and less than or equal to seven. It must not have any negative elements.

Optional Arguments
padmust be array-valued and of the same type and type parameters@s

order must be of type INTEGER and of the same shagbhagse Its value must be a permu-
tation of (1, 2, ...n), wheren is the size oéhape If orderis absent, it is as if it were present
with the value (1, 2, ..n).

Result

The result is an array of shagieapewith the same type and type parametersoasce The
elements of the result, taken in permuted subscript ayd#e(1), ...,order(n), are those of
sourcein array element order followed if necessary by elements of one or more cqpaes of
in array element order.

204 Lahey Fortran 90 Language Reference

RETURN Statement

Example
x = reshape((/1,2,3,4/), (/13,2/), pad=(/0/))
I x is assigned |1 4|
! |2 0]
! [30]

RETURN Statement

Description
The RETURN statement completes execution of a procedure and transfers control back to the
statement following the procedure invocation.

Syntax
RETURN [scalar-int-expr]

Where:
scalar-int-expris a scalar INTEGER expression.

Remarks

If scalar-int-expris present and has a valueetween 1 and the number of asterisks in the
subprogram's dummy argument list, the CALL statement that invoked the subroutine trans-
fers control to the statement identified by ttie alternate return specifier in the actual
argument list.

Example
subroutine zee (a, b)
implicit none
real, intent(in out) :: a, b

if (a>b) then
return ! subroutine completed
else
a=a*b
return ! subroutine completed
end if
end subroutine zee

REWIND Statement

Description
The REWIND statement positions the specified file at its initial point.

Lahey Fortran 90 Language Reference 205

Chapter 2 Alphabetical Reference

Syntax
REWIND unit-number

or
REWIND (position-spec-ligt
Where:

unit-numberis a scalar INTEGER expression corresponding to the input/output unit number
of an external file.

position-spec-lists [[UNIT =] unit-number][, ERR =label][, IOSTAT =stat |where
UNIT=, ERR=, and IOSTAT= can be in any order but if UNIT= is omitted, teanumber
must be first.

labelis a statement label that is branched to if an error condition occurs during execution of
the statement.

statis a variable of type INTEGER that is assigned a positive value if an error condition
occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Remarks
Rewinding a file that is connected but does not exist has no effect.

Example
rewind 10 ! file connected to unit 10 rewound
rewind (10, err = 100)
I file connected to unit 10 rewound
I on error goto label 100

RRSPACING Function

Description
Reciprocal of relative spacing near a given number.

Syntax
RRSPACING K)

Arguments
x must be of type REAL.

Result

The result is of the same type and kinc.a#is value is the reciprocal of the spacing, near
of REAL numbers of the kind of.

206 Lahey Fortran 90 Language Reference

SAVE Statement

Example
r = rrspacing(-4.7) ! r is assigned the value 0.985662E+07

SAVE Statement

Description

The SAVE statement specifies that all objects in the statement retain their association, allo-
cation, definition, and value after execution of a RETURN or END statement of a
subprogram.

Syntax
SAVE [[::] saved-entities]

Where:
saved-entitess a comma-separated listalfject-name
or /common-block-name

object-namas the name of a data object.
common-block-namis the name of a common block.

Remarks

Objects declared with the SAVE attribute in a subprogram are shared by all instances of the
subprogram.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

A SAVE statement without saved-entitiedist specifies that all allowable objects in the
scoping unit have the SAVE attribute.

If a common block is specified in a SAVE statement other than in the main program, it must
be specified in every scoping unit in which it appears except in the main program.

A SAVE statement in the main program has no effect.
Example
save i,j,/myblock/,k !i,j,k and common block

I myblock have the save
I attribute

Lahey Fortran 90 Language Reference 207

Chapter 2 Alphabetical Reference

SCALE Function

Description
Multiply a number by a power of two.

Syntax
SCALE (x, i)

Arguments
x must be of type REAL.
i must be of type INTEGER.

Result _
The result is of the same type and kincasts value isx x 2

Example
x = scale(1.5,3) ! x is assigned the value 12.0

SCAN Function

Description
Scan a string for any one of a set of characters.

Syntax
SCAN (string, set back

Required Arguments
string must be of type CHARACTER.

setmust be of the same kind and typesasg.

Optional Arguments
backmust be of type LOGICAL.

Result

The result is of type default INTEGER. Hackis absent, or if it is present with the value
false, the value of the result is the position number of the leftmost charasténgrthat is

in set If backis present with the value true, the value of the result is the position number of
the rightmost character Btring that is inset

208 Lahey Fortran 90 Language Reference

SEGMENT Function

Example
i = scan ("Lalalalala","la") ! i is assigned the
I'value 2
i = scan ("LalalaLALA","la",back=.true.)
I'iis assigned the
I value 6

SEGMENT Function

Description
Get the DOS segment portion of the memory address of a variable, substring, array reference,
or external subprogram.

Syntax
SEGMENT {tem)

Arguments
item canbe of any type. It is the name for which to return a segmtamh must have the
EXTERNAL attribute.

Result
The result is of type INTEGER. It is the segment portion of the memory addiie=s. of

Example
i = segment(a) ! get the segment portion of the address of a

SELECT CASE Statement

Description

The SELECT CASE statement begins a CASE construct. It contains an expression that,
when evaluated, produces a case index. The case index is used in the CASE construct to
determine which block in a CASE construct, if any, is executed.

Syntax

[construct-name] SELECT CASE ¢ase-expr

Where:
construct-namés an optional name for the CASE construct.

case-expis a scalar expression of type INTEGER, LOGICAL, or CHARACTER.

Lahey Fortran 90 Language Reference 209

Chapter 2

Alphabetical Reference

Remarks

If the SELECT CASE statement is identified bgamstruct-namgthe corresponding END
SELECT statement must be identified by the same construct name. If the SELECT CASE
statement is not identified bycanstruct-namgthe corresponding END SELECT statement
must not be identified by a construct name. If a CASE statement is identifiembhgtauct-
name the corresponding SELECT CASE statement must specify thecsarseuct-name

Example
select case (i+j)
case (:-1)
I executed if i+j<0
case (0)
. I executed if i+j==0
case (1,4,7)
I executed if i+j==(1 or 4 or 7)
case default
I executed if none of the other case
I selectors match i+j
end select

SELECTED_INT_KIND Function

Description
Kind type parameter of an INTEGER data type that represents all integer walites
-10'<n<10".

Syntax
SELECTED _INT_KIND ¢)

Arguments
r must be a scalar INTEGER.

Result

The result is a scalar of type default INTEGER. Its value is equal to the kind type parameter
of the INTEGER data type that accomodates all vatugith —10' <n< 10" . If no such

kind is available, the result is -1. If more than one kind is available, the return value is the
value of the kind type parameter of the kind with the smallest decimal exponent range.

Example
integer (kind=selected_int_kind(3)) :: i,j
l'iand j are of a data type with a decimal range of
I at least -1000 to 1000

210 Lahey Fortran 90 Language Reference

SELECTED_REAL_KIND Function

SELECTED_REAL_KIND Function

Description
Kind type parameter of a REAL data type with decimal precision of atpetigits and a
decimal exponent range of at least

Syntax
SELECTED_REAL_KIND 6, r)

Optional Arguments
p must be a scalar INTEGER.

r must be a scalar INTEGER.

Result

The result is a scalar of type default INTEGER. Its value is equal to the kind type parameter
of the REAL data type with decimal precision of at lgadigits and a decimal exponent

range of at least If no such kind is available the result is -1 if the precision is not available,
-2 if the range is not available, and -3 if neither is available. If more than one kind is avail-
able, the return value is the value of the kind type parameter of the kind with the smallest
decimal precision.

Example
real, (kind=selected_real_kind(3,3)) :: a,b
l'aand b are of a data type with a decimal range of
I at least -1000 to 1000 and a precision of at least
I 3 decimal digits

SEQUENCE Statement

Description
The SEQUENCE statement can only appear in a derived type definition. It specifies that the
order of the component definitions is the storage sequence for objects of that type.

Syntax
SEQUENCE

Remarks
If a derived type definition contains a SEQUENCE statement, the derived type is a sequence

type.

Lahey Fortran 90 Language Reference 211

Chapter 2 Alphabetical Reference

If SEQUENCE is present in a derived type definition, all derived types specified in compo-
nent definitions must be sequence types.

Example
type zee
sequence ! zee is a sequence type
real :: a,b,c ! a,b,cis the storage sequence for zee
end type zee

SET_EXPONENT Function

Description
Model representation of a number with exponent part set to a power of two.

Syntax
SET_EXPONENTYX, i)

Arguments
x must be of type REAL.

i must be of type INTEGER.

Result
The result is of the same type and kindkadts value is the FRACTIOMNJ*2'.

Example
a = set_exponent (4.6, 2) | a is assigned 2.3

SHAPE Function

Description
Shape of an array.

Syntax
SHAPE 6ourcd

Arguments
sourcecan be of any type and can be array-valued or scalar. It must not be an assumed-size
array. It must not be a pointer that is disassociated or an allocatable array that is not allocated.

212 Lahey Fortran 90 Language Reference

SIGN Function

Result
The result is a default INTEGER array of rank one whose size is the remlroéand whose
value is the shape sburce

Example

i = shape(b(1:9,-2:3,10))! i is assigned the value
1(/9,6,10/)

SIGN Function

Description
Transfer of sign.

Syntax
SIGN (@, b)

Arguments
a must be of type INTEGER or REAL.

b must be of the same type and kindaas
Result
The result is of the same type and kinchasdts value is thea| , i is greater than or equal

to zero; and-al , ibis less than zero.

Example
a =sign (30,-2) ! ais assigned the value -30

SIN Function

Description
Sine.

Syntax
SIN (x)

Arguments
x must be of type REAL or COMPLEX.

Lahey Fortran 90 Language Reference 213

Chapter 2 Alphabetical Reference

Result

The result is of the same type and kincka#ts value is a REAL or COMPLEX representa-
tion of the sine ok.

Example
r =sin(.5) !ris assigned the value 0.479426

SINH Function

Description
Hyperbolic sine.

Syntax
SINH (x)

Arguments
x must be of type REAL.

Result
The result is of the same type and kinc.akis value is a REAL representation of the hyper-

bolic sine ofx.

Example
r =sinh(.5) !ris assigned the value 0.521095

SIZE Function

Description
Size of an array or a dimension of an array.

Syntax
SIZE (array, dim)

Required Arguments

array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

214 Lahey Fortran 90 Language Reference

SPACING Function

Optional Arguments

dimmust of type INTEGER and must be a dimensioartdy. If array is assumed-sizdim
must be present and less than the rardeiafy

Result

The result is a scalar of type default INTEGERdith is presentthe result is the extent of
dimensiondim of array. If dimis absent, the result is the number of elemerdsray.

Example
integer, dimension (3,-4:0) :: i
integer :: Kk,j

j=size (i) !jis assigned the value 15
k = size (i, 2) !k is assigned the value 5

SPACING Function

Description
Absolute spacing near a given number.

Syntax
SPACING §)

Arguments
x must be of type REAL.

Result
The result is of the same type and kincaéts value is the spacing of REAL values, of the

kind of x, nearx.

Example
X = spacing(4.7) ! x is assigned the value 0.476837E-06

SPREAD Function

Description
Adds a dimension to an array by adding copies of a data object along a given dimension.

Lahey Fortran 90 Language Reference 215

Chapter 2 Alphabetical Reference

Syntax
SPREAD éource dim, ncopie$

Arguments
sourcecan be of any type and can be scalar or array-valued. Its rank must be less than seven.

dim must be a scalar of type INTEGER with a value in the rahgelim< n+ 1 , Where
is the rank okource

ncopiesmust be a scalar of type INTEGER.

Result

The result is an array of the same type and kirgbasceand of rankn + 1, wheren is the
rank ofsource If sourceis scalar, the shape of the result is MAZgpies 0) and each ele-
ment of the result has a value equaldarce If sourceis array-valued with shapd,(d,, ...,
d,), the shape of the result @ (d,, ..., dyim1. MAX(ncopies 0), dyim1 ---,dn) @and the element
of the result with subscripts,(r,, ...,r..1) has the valusourcery, r,, ...,rgimas Fdimety -« M),

Example
real, dimension(2) :: b=(/1,2/)
real, dimension(2,3) :: a
a =spread(b,2,3) !ais assigned |1 1 1|
222

SQRT Function

216

Description
Square Root.

Syntax
SQRT &)

Arguments
x must be of type REAL or COMPLEX. Xfis REAL, its value must be greater than or equal
to zero.

Result

The result is of the same kind and type.af x is of type REAL, the result value is a REAL
representation of the square rookofif x is of type COMPLEX, the result value is the prin-
cipal value with the real part greater than or equal to zero. When the real part of the result is
zero, the imaginary part is greater than or equal to zero.

Lahey Fortran 90 Language Reference

Statement Function Statement

Example
X = sqrt(16.0) ! x is assigned the value 4.0

Statement Function Statement

Description
A statement function is a function defined by a single statement.

Syntax
function-named[dummy-args] = scalar-expr

Where:
function-namas the name of the function being defined.

dummy-argss a comma-separated list of dummy argument names.
scalar-expris a scalar expression.

Remarks

scalar-exprcan be composed only of literal or named constants, scalar variables, array ele-
ments, references to functions and function dummy procedures, and intrinsic operators.

If a reference to a statement function appeassatar-expr its definition must have been
provided earlier in the scoping unit and must not be the name of the statement function being
defined.

Each scalar variable referencesgalar-expmust be either a reference to a dummy argument
of the statement function or a reference to a variable local to the same scoping unit as the
statement function statement.

The dummy arguments have a scope of the statement function statement.

A statement function must not be supplied as a procedure argument.

Example
mean(a,b) =(a+b)/2
¢ =mean(2.0,3.0) ! c is assigned the value 2.5

STOP Statement

Description
The STOP statement terminates execution of the program.

Lahey Fortran 90 Language Reference 217

Chapter 2 Alphabetical Reference

Syntax
STOP] stop-code]

Where:
stop-codes a scalar CHARACTER constant or a series of 1 to 5 digits.

Remarks
When a STOP statement is reached, the optitnalcodds displayed.

Example
if (a>b) then
stop I program execution terminated
end if

SUBROUTINE Statement

Description

The SUBROUTINE statement begins a subroutine subprogram and specifies its dummy
argument names and whether it is recursive.

Syntax
[RECURSIVE] SUBROUTINEsubroutine-namé[dummy-arg-names)|

Where:
subroutine-namés the name of the subroutine.

dummy-arg-nameis a comma-separated list of dummy argument names.

Remarks

The keyword RECURSIVE must be present if the subroutine directly or indirectly calls itself
or a subroutine defined by an ENTRY statement in the same subprogram. RECURSIVE
must also be present if a subroutine defined by an ENTRY statement directly or indirectly
calls itself, another subroutine defined by an ENTRY statement, or the subroutine defined by
the SUBROUTINE statement.

Example
subroutine zee (barl, bar2)

218 Lahey Fortran 90 Language Reference

SUM Function

SUM Function

Description
Sum of elements of an array, along a given dimension, for which a mask is true.

Syntax
SUM (array, dim, mask

Required Arguments
array must be of type INTEGER, REAL, or COMPLEX. It must not be scalar.

Optional Arguments

dimmust be a scalar INTEGER in the rarfgg dim< n , wingsethe rank ofirray. The
corresponding dummy argument must not be an optional dummy argument.

maskmust be of type LOGICAL and must be conformable \aittay.

Result

The result is of the same type and kingaay. It is scalar ifdimis absent or irray has
rank one; otherwise the result is an array of r&dkand of shape

(dq, dy, ..., Agim—1, Agim+ 1 ---» d,) where (d;, d,, ..., d,) is the shape afray. If dim
is absent, the value of the result is the sum of the values of all the elemeamésy ofif dim
is present, the value of the result is the sum of the values of all elemamnts/@iong dimen-
siondim. If maskis present, the elementsasfay for whichmaskis false are not considered.

Example
integer, dimension (2,2) :: m = reshape((/1,2,3,4/),(/12,2/))
I'mis the array |1 3|
! |2 4
i =sum(m) I'iis assigned 10
j=sum(m,dim=1) !jis assigned [3,7]
k = sum(m,mask=m>2) ! k is assigned 7

SYSTEM Subroutine

Description
Execute a DOS command as if from the DOS command line.

Lahey Fortran 90 Language Reference 219

Chapter 2 Alphabetical Reference

Syntax
SYSTEM €md

Arguments

cmdmust be of type CHARACTER. Its length must not be greater than 122. Itis an
INTENT(IN) argument that is a DOS command to be executed as if it were typed on the DOS
command line. Use of the SYSTEM subroutine for invocation of protected-mode programs
is not supported.

Example
call system("dir > current.dir")
I puts a listing of the current directory into
I the file 'current.dir’

SYSTEM_CLOCK Subroutine

220

Description
INTEGER data from the real-time clock.

Syntax
SYSTEM_CLOCK ¢ount count_rate count_max

Optional Arguments

countmust be a scalar of type default INTEGER. Itis an INTENT (OUT) argument. Its
value is set to the current value of the processor clock or to

-HUGE(0) if no clock is available.

count_ratemust be a scalar of type default INTEGER. Itis an INTENT (OUT) argument.
It is set to the number of processor clock counts per second, or to zero if there is no clock.

count_maxmust be a scalar of type default INTEGER. Itis an INTENT (OUT) argument.
It is set to the maximum value thauntcan have, or zero if there is no clock.

Example
call system_clock(c, cr, cm) ! ¢ is set to current
I value of processor
I clock. cris setto
I the count_rate, and cm
lis set to the
I count_max

Lahey Fortran 90 Language Reference

TAN Function

TAN Function

Description

Tangent.

Syntax
TAN ()

Arguments
x must be of type REAL.

Result
The result is of the same type and kind.alés value is a REAL representation of the tangent

of x.

Example
r =tan(.5) !ris assigned the value 0.546302

TANH Function

Description
Hyperbolic tangent.

Syntax
TANH ()

Arguments
x must be of type REAL.

Result
The result is of the same type and kinc.alis value is a REAL representation of the hyper-

bolic tangent ok.

Lahey Fortran 90 Language Reference 221

Chapter 2 Alphabetical Reference

Example
r =tanh(.5) !ris assigned the value 0.462117

TARGET Statement

Description
The TARGET statement specifies a list of object names that have the target attribute and thus
can have pointers associated with them.

Syntax
TARGET] ::] object-name (array-speg] [, object-name (array-speg]] ...

Where:
object-namas the name of a data object.

array-speds an array specification.

Example
target a,b,c ! a,b, and c have the target attribute

TIMER Subroutine

Description
Hundredths of seconds elapsed since midnight.

Syntax
TIMER (iticks)

Arguments

iticks must be of type default INTEGER. It is assigned the hundredths of a second elapsed
since midnight on the system clock.

222 Lahey Fortran 90 Language Reference

TINY Function

Example
call timer (iticks)

TINY Function

Description
Smallest representable positive number of data type.

Syntax
TINY (X)

Arguments
x must be of type REAL.

Result
The result is a scalar of the same type and kixd #s value is the smallest positive number
in the data type of.

Example
a=tiny (4.0) ! ais assigned 0.117549E-37

TRANSFER Function

Description
Interpret the physical representation of a number with the type and type parameters of a given
number.

Syntax
TRANSFER 6ource mold siz@

Required Arguments
sourcecan be of any type.
moldcan be of any type.
Optional Arguments

sizemust be a scalar of type INTEGER. The corresponding actual argument must not be a
optional dummy argument.

Lahey Fortran 90 Language Reference 223

Chapter 2 Alphabetical Reference

Result

The result is of the same type and type parametermhs If moldis a scalar andizeis
absent the result is a scalarmibldis array-valued ansizeis absent, the result is array val-
ued and of rank one. Its size is as small as possible such that it is not shogeutbanif
sizeis present, the result is array-valued of rank one and ofiziee

If the physical representation of the result is the same length as the physical representation of
source the physical representation of the result is thabofce If the physical representa-

tion of the result is longer than that of source, the physical representation of the leading part

of the result is that afourceand the trailing part is undefined. If the physical representation

of the result is shorter than that of source, the physical representation of the result is the lead-
ing part ofsource.

Example
real :: a
integer :: i

a = transfer(i,a) ! a is assigned the physical
I representation of i

TRANSPOSE Function

Description
Transpose an array of rank two.

Syntax
TRANSPOSE ifatrix)

Arguments
matrix can be of any type. It must be of rank two.

Result

The result is of the same type, kind, and rankagix. Its shape isn(m), where (n, n) is
the shape ofnatrix. Elementi(j) of the result has the valueatrix(j, i).

224 Lahey Fortran 90 Language Reference

TRIM Function

Example
integer, dimension(2,3):: a=reshape((/1,2,3,4,5,6/),(/2,3/))
I represents the matrix |1 3 5]
[2 4 6]
integer, dimension(3,2) :: b
b = transpose(a) ! b is assigned the value
! [12]
! [3 4|
! [5 6]

TRIM Function

Description
Omit trailing blanks.

Syntax
TRIM (string)

Arguments
string must be of type CHARACTER and must be scalar.

Result
The resultis of the same type and kindtaisig. Its value and length are thosesting with

trailing blanks removed.

Example
shorter = trim("longer ")
! shorter is assigned the value "longer"

Type Declaration Statement

See INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, CHARACTER, or
TYPE statement.

Lahey Fortran 90 Language Reference 225

Chapter 2 Alphabetical Reference

TYPE Statement

226

Description
The TYPE statement specifies that all entities whose names are declared in the statement are
of the derived type named in the statement.

Syntax
TYPE type-namg[, attribute-list::] entity [, entity] ...

Where:
type-names the name of a derived type previously defined in a derived-type definition.

attribute-listis a comma-separated list from the following attributes: PARAMETER, ALLO-
CATABLE, DIMENSION(array-speg, EXTERNAL, INTENT (IN) or INTENT (OUT) or
INTENT (IN OUT), PUBLIC or PRIVATE, INTRINSIC, OPTIONAL, POINTER, SAVE,
TARGET.

entityis entity-nam¢ (array-speg] [= initialization-expr]
or function-name (array-speg]

array-speds an array specification.

initialization-expris an expression that can be evaluated at compile time.
entity-namds the name of a data object being declared.

function-namas the name of a function being declared.

Remarks

The same attribute must not appear more than once in a TYPE statement.

function-nameanust be the name of an external, statement, or intrinsic function, or a function
dummy procedure.

The =initialization-exprmust appear if the statement contains a PARAMETER attribute.

If = initialization-exprappears, a double colon must appear before the ksitiies Each
entity has the SAVE attribute, unless it is in a named common block.

The =initialization-exprmust not appear gntity-names a dummy argument, a function

result, an object in a named common block unless the type declaration is in a block data pro-
gram unit, an object in blank common, an allocatable array, a pointer, an external name, an
intrinsic name, or an automatic object.

The ALLOCATABLE attribute can be used only when declaring an array that is not a
dummy argument or a function result.

An array declared with a POINTER or an ALLOCATABLE attribute must be specified with
a deferred shape.

Lahey Fortran 90 Language Reference

UBOUND Function

An array-specfor afunction-namehat does not have the POINTER attribute must be spec-
ified with an explicit shape.

An array-specfor afunction-namehat does have the POINTER attribute must be specified
with a deferred shape.

If the POINTER attribute is specified, the TARGET, INTENT, EXTERNAL, or INTRINSIC
attribute must not be specified.

If the TARGET attribute is specified, the POINTER, EXTERNAL, INTRINSIC, or
PARAMETER attribute must not be specified.

The PARAMETER attribute must not be specified for dummy arguments, pointers, allocat-
able arrays, functions, or objects in a common block.

The INTENT and OPTIONAL attributes can be specified only for dummy arguments.
An entitymust not have the PUBLIC attribute if its type has the PRIVATE attribute.

The SAVE attribute must not be specified for an object that is in a common block, a dummy
argument, a procedure, a function result, or an automatic data object.

An entitymust not have the EXTERNAL attribute if it has the INTRINSIC attribute.

An entityin a TYPE statement must not have the EXTERNAL or INTRINSIC attribute spec-
ified unless it is a function.

An array must not have both the ALLOCATABLE attribute and the POINTER attribute.

An entity must not be given explicitly any attribute more than once in a scoping unit.

Example
type zee
real ::a, b
integer :: i
end type zee
type (zee) ::a, b,c !a, b, and c are of type zee
type (zee), dimension (2, 4) :: d
Idis a2 by 4 array of type zee
type (zee) :: e = zee(2.0, 3.5, -1)
I e is initialized

UBOUND Function

Description
Upper bounds of an array or a dimension of an array.

Lahey Fortran 90 Language Reference 227

Chapter 2 Alphabetical Reference

Syntax
UBOUND (array, dim)

Required Arguments
array can be of any type. It must not be a scalar and must not be a pointer that is disassociated
or an allocatable array that is not allocated.

Optional Arguments
dim must of type INTEGER and must be a dimensioarcdy.

Result

The result is of type default INTEGER. dimis presentthe result is a scalar with the value
of the upper bound afrray. If dimis absent, the result is an array of rank one with values
corresponding to the upper bounds of each dimensiarray.

The result is zero for zero-sized dimensions.

Example
integer, dimension (3,-4:0) :: i
integer :: k, j(2)
j=ubound (i) !jis assigned the value [3,0]
k = ubound (i, 2) !k is assigned the value O

UNDFL Subroutine

Description

The initial invocation of the UNDFL subroutine masks the underflow interrupt on the float-
ing-point unit. Iflag must be set to true on the first invocation. Subsequent envocations
return true or false in théag variable if the exception has occurred or not occurred,
respectively.

Syntax
UNDFL (Iflag)

Arguments
Iflag must be of type LOGICAL. It is assigned the value true if an underflow exception has

occurred, and false otherwise.

Example
call undfl (Iflag) ! mask the underflow interrupt

228 Lahey Fortran 90 Language Reference

UNPACK Function

UNPACK Function

Description
Unpack an array of rank one into an array under control of a mask.

Syntax
UNPACK (vector, mask field)

Arguments

vectorcan be of any type. It must be of rank one. Its size must be at least as large as the
number of true elements mask

maskmust be of type LOGICAL. It must be array-valued.

field must be of the same type and type parametarsast It must be conformable with
mask

Result

The result is an array of the same type and type parameterstasand the same shape as
mask The element of the result that corresponds tithhelement ofmask in array-element
order, has the valugecto(i) fori = 1, 2, ...t, wheret is the number of true valuesnmask
Each other element has the vdiiedd if field is scalar or the corresponding elemertfteid,

if field is an array.

Example
integer, dimension(9) :: ¢ = (/0,3,2,4,3,2,5,1,2/)
logical, dimension(2,2) :: d
integer, dimension(2,2) :: e
d = reshape((/.false.,.true., .true.,.false./), (/12, 2/))
e = unpack(c,mask=d,field=-1)
I eis assigned |-1 3|
! |0-1f

USE Statement

Description

The USE specifies that a specified module is accessible by the current scoping unit. It also
provides a means of renaming or limiting the accessibility of entities in the module.

Lahey Fortran 90 Language Reference 229

Chapter 2 Alphabetical Reference

230

Syntax
USE module [rename-list]

or
USEmodule,ONLY: [only-list]

Where:
moduleis the name of a module.

rename-listis a comma-separated listlo€al-name=> use-name

only-listis a comma-separated listaxfcess-id
or [local-name=> use-name]

local-nameis the local name for the entity specifieduse-name
use-names the name of an entity in the specified module

access-ids use-name
or generic-spec

generic-speds generic-name
or OPERATOR defined-operatdr
or ASSIGNMENT (=)

generic-namas the name of a generic procedure.

defined-operators one of the intrinsic operators
or .op-name

op-names a user-defined name for the operation.

Remarks
If no local-nameis specified, the local nametse-name

A USE statement without ONLY provides access to all PUBLIC entities in the specified

module.

A USE statement with ONLY provides access only to those entities that appeaomfythe

list.

If more than one USE statement appears in a scoping uniérthme-liss andonly-lists are

treated as one concatenatedame-list

If two or more generic interfaces that are accessible in the same scoping unit have the same
name, same operator, or are assignments, they are interpreted as a single generic interface.

Two or more accessible entities, other than generic interfaces, can have the same name only

if no entity is referenced by this name in the scoping unit.

An entity can be accessed by more thanlooal-name

Lahey Fortran 90 Language Reference

VAL Function

A local-namemust not be respecified with differing attributes in the scoping unit that con-
tains the USE statement, except that it can appear in a PUBLIC or PRIVATE statement in the
scoping unit of a module.

Forward references to modules are not allowed in Lahey Fortran. That s, if a module is used
in the same source file in which it resides, the module program unit must appear before its
use.

Example
use my_lib, aleph => alpha
I'use all public entities in my_lib, and
I refer to alpha as aleph locally to prevent
I conflict with alpha in this_module below
use this_module, only: alpha, beta, operator(+)
I use only alpha, beta, and the defined
I operator (+) from this_module

VAL Function

Description
Pass an item to a procedure by value. VAL can only be used as an actual argument.

Syntax
VAL (item)

Arguments

item carbe a named data object of type INTEGER, REAL, or LOGICAL. ltisthe data object
for which to return an addresgemis an INTENT(IN) argument.

Lahey Fortran 90 Language Reference 231

Chapter 2 Alphabetical Reference

232

Result

The result is the value @etm Its C data type is as follows:

Table 11: VAL result types

Fortran Type Fortran Kind C type
INTEGER 1 long int
INTEGER 2 long int
INTEGER 4 long int
REAL 4 float
REAL 8 double
must not be passed by value; if
passed by reference (without

CARG) it is a pointer to a structure

COMPLEX 4 of the form:
struct complex {
float real_part;
float imaginary_part;};
must not be passed by value; if
passed by reference (without

CARG) it is a pointer to a structure

COMPLEX 8 of the form:
struct dp_complex {
double real_part;
double imaginary_part;};
LOGICAL 1 unsigned long
LOGICAL 4 unsigned long
CHARACTER 1 must not be passed by value with
VAL
Example

i =my_c_function(val(a)) ! a is passed by value

Lahey Fortran 90 Language Reference

VERIFY Function

VERIFY Function

Description
Verify that a set of characters contains all the characters in a string.

Syntax
VERIFY (string, set back

Required Arguments
string must be of type CHARACTER.

setmust be of the same kind and typesaig.

Optional Arguments
backmust be of type LOGICAL.

Result

The result is of type default INTEGER. Hackis absent, or if it is present with the value
false, the value of the result is the position number of the leftmost charasténgrthat is
notinset If backis present with the value true, the value of the result is the position number
of the rightmost character giring that is not irset The value of the result is zero if each
character irstring is in set or if string has length zero.

Example
i = verify ("Lalalalala","I") !i is assigned the
'value 1
i = verify ("LalalaLALA","LA",back=.true.)
l'iis assigned the

I value 6

WHERE Construct

Description

The WHERE construct controls which elements of an array will be affected by a block of
assignment statements. This is also known as masked array assignment.

Lahey Fortran 90 Language Reference 233

Chapter 2 Alphabetical Reference

Syntax
WHERE {nask-expr
[assignment-stmt]

[assignment-stmt]

[ELSEWHERE
[assignment-stmt]
[assignment-stmt]

END WHERE

Where:
mask-expiis a LOGICAL expression.

assignment-stnis an assignment statement.

Remarks
The variable on the left-hand sideasfsignment-stnmust have the same shaperesk-
expr.

Whenassignment-stms executed, the right-hand side of the assignment is evaluated for all
elements whermask-expis true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand s@gs@nment-stmthe
function is evaluated without any masked control byntiask-expr

mask-expis evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities mask-expihave no effect on the masking.

assignment-stnthust not be a defined assignment.

Example
where (b>c) ! begin where construct
b=-1
elsewhere
b=1
end where

234 Lahey Fortran 90 Language Reference

WHERE Statement

WHERE Statement

Description

The WHERE statement is used to mask the assignment of values in array assignment state-
ments. The WHERE statement can begin a WHERE construct that contains zero or more
assignment statements, or can itself contain an assignment statement.

Syntax
WHERE nask-expr[assignment-stmt]

Where:
mask-expiis a LOGICAL expression.

assignment-stms an assignment statement.

Remarks

If the WHERE statement contains assignment-stmit specifies the beginning of a
WHERE construct.

The variable on the left-hand sideasfsignment-stnmust have the same shapevassk-
expr.

Whenassignment-stnis executed, the right-hand side of the assignment is evaluated for all
elements whermask-expis true and the result assigned to the corresponding elements of
the left-hand side.

If a non-elemental function reference occurs in the right-hand sass@fnment-stmthe
function is evaluated without any masked control byntiask-expr

mask-expis evaluated at the beginning of the masked array assignment and the result value
governs the masking of assignments in the WHERE statement or construct. Subsequent
changes to entities mask-expihave no effect on the masking.

assignment-stnthust not be a defined assignment.

Example

I'a, b, and c are arrays

where (a>b) a = -1 ! where statement

where (b>c) ! begin where construct
b=-1

elsewhere
b=1

end where

Lahey Fortran 90 Language Reference 235

Chapter 2 Alphabetical Reference

WRITE Statement

236

Description
The WRITE statement transfers values to an input/output unit from the entities specified in
an output list or a namelist group.

Syntax
WRITE (io-control-specs[outputs]

Where:
outputsis a comma-separated listextpr
or io-implied-do

expris a variable.
io-implied-dois (outputs implied-do-contro)
implied-do-controlis do-variable=start, end [, increment]

start, end andincrementre scalar numeric expressions of type INTEGER, REAL or double-
precision REAL.

do-variableis a scalar variable of type INTEGER, REAL or double-precision REAL.

io-control-specss a comma-separated list of
[UNIT =] io-unit

or[FMT =] format

or [NML =] namelist-group-name
or REC =record

or IOSTAT =stat

or ERR =errlabel

or END =endlabel

or EOR =eorlabel

or ADVANCE =advance

or SIZE =size

io-unit is an external file unit
or*

formatis a format specification (sémput/Output Editing” beginning on page 24).
namelist-group-names the name of a namelist group.
recordis the number of the direct-access record that is to be written.

statis a scalar default INTEGER variable that is assigned a positive value if an error condi-
tion occurs, a negative value if an end-of-file or end-of-record condition occurs, and zero
otherwise.

Lahey Fortran 90 Language Reference

WRITE Statement

errlabelis a label that is branched to if an error condition occurs and no end-of-record con-
dition or end-of-file condition occurs during execution of the statement.

endlabelis a label that is branched to if an end-of-file condition occurs and no error condition
occurs during execution of the statement.

eorlabelis a label that is branched to if an end-of-record condition occurs and no error con-
dition or end-of-file condition occurs during execution of the statement.

advancsds a scalar default CHARACTER expression that evaluates to NO if non-advancing
input/output is to occur, and YES if advancing input/output is to occur. The default value is
YES.

sizeis a scalar default INTEGER variable that is assigned the number of characters trans-
ferred by data edit descriptors during execution of the current non-advancing input/output
statement.

Remarks

io-control-specsnust contain exactly onie-unit, and must not contain botHf@matand a
namelist-group-name

A namelist-group-nammust not appear dutputsis present.

If the optional characters UNIT= are omitted befior@nit, io-unit must be the first item in
io-control-specs If the optional characters FMT= are omitted beforeat formatmust be
the second item im-control-specs If the optional characters NML= are omitted before
namelist-group-nameamelist-group-namenust be the second itemigrcontrol-specs

If io-unitis an internal fileio-control-specsnust not contain a REC= specifier aramelist-
group-name

If the REC= specifier is present, an END= specifier must not appeamalist-group-name
must not appear, arfidrmatmust not be an asterisk indicating list-directed I/O.

An ADVANCE-= specifier can appear only in formatted sequential I/O with an explicit for-
mat specificationformat-expy whose control list does not contain an internal file specifier.
If an EOR= or SIZE= specifier is present, an ADVANCE= specifier must also appear with
the value NO.

Thedo-variableof animplied-do-controthat is contained within anothierimplied-domust
not appear as trap-variableof the containingo-implied-da

If an array appears as an output item, it is treated as if the elements were specified in array-
element order.

If a derived type object appears as an output item, it is treated as if all of the components were
specified in the same order as in the definition of the derived type.

Lahey Fortran 90 Language Reference 237

Chapter 2 Alphabetical Reference

Example

write (*,*) a,b,c ! write a, b, and ¢ using list-
I directed i/o

write (3, fmt="(e7.4)") x
I write x to unit 3 using e format

write 10, i,j,k
I'write i, j, and k using format on
I'line 10

YIELD Subroutine

Description

The YIELD subroutine causes a Windows 3.1 program to yield control to Windows so that
computation-intensive operations do not monopolize the processor. YIELD has no effect
under other supported operating systems.

Syntax
YIELD ()

Example
call yield ()

238 Lahey Fortran 90 Language Reference

YIELD Subroutine

Lahey Fortran 90 Language Reference 239

Chapter 2 Alphabetical Reference

240 Lahey Fortran 90 Language Reference

Fortran 77/
Compatibllit y

This chapter discusses issues that affect the behavior of Fortran 77 code when processed by
Lahey Fortran 90.

Different Interpretation Under Fortran 90

Standard Fortran 90 is a superset of standard Fortran 77 and a standard-conforming Fortran
77 program will compile properly under Fortran 90. There are, however, some situations in
which the program’s interpretation may differ.

e Fortran 77 permitted a processor to supply more precision derived from a REAL con-
stant than can be contained in a REAL datum when the constant is used to initialize
a DOUBLE PRECISION data object in a DATA statement. Fortran 90 does not per-
mit this option.

» If anamed variable that is not in a common block is initialized in a DATA statement
and does not have the SAVE attribute specified, Fortran 77 left its SAVE attribute
processor-dependent. Fortran 90 specifies that this named variable has the SAVE
attribute.

» Fortran 77 required that the number of characters required by the input list must be
less than or equal to the number of characters in the record during formatted input.
Fortran 90 specifies that the input record is logically padded with blanks if there are
not enough characters in the record, unless the PAD="NO" option is specified in an
appropriate OPEN statement.

» Fortran 90 has more intrinsic procedures than Fortran 77. Therefore, a standard-con-
forming Fortran 77 program may have a different interpretation under Fortran 90 if
it invokes a procedure having the same name as one of the new standard intrinsic pro-
cedures, unless that procedure is specified in an EXTERNAL statement as
recommended for non-intrinsic functions in the appendix to the Fortran 77 standard.

Lahey Fortran 90 Language Reference 241

Appendix A Fortran 77 Compatibility

Obsolescent Features

The following features are obsolescent. Their use in new code is not recommended:
e Arithmetic IF
» REAL and double-precision DO control variables and DO loop control expressions

+ shared DO termination and termination on a statement other than END DO or
CONTINUE

» Branching to an END IF statement from outside its IF block
+ Alternate return

* PAUSE statement

» ASSIGN statement and assigned GOTO statement

» Assigned format specifier

* nH (Hollerith) edit descriptor

Popular Extensions

In addition to the extensions documented in blue in Chapters 1 and 2, the following popular
Fortran 77 extensions are supported for backward compatibility. These features do not pro-
vide functionality absent from standard Fortran 90 and they are likely to cause porting
problems when moving to other Fortran 90 platforms. Their use in new code is not
recommended:

» infixed source form, if a tab appears in the first six columns, it is replaced by blanks
through column 6 if the character following the tab is a letter; otherwise, it is replaced
by blanks through column 5 so the character is placed in the continuation character
column.

» the '$ character can be used as a non-initial character in a name.
e up to 99 continuation lines are accepted in fixed source form.
* typespec¢ nin typedeclaration statements, e.g., REAL*8, INTEGER*4.

e BYTE as a synonym for INTEGER*1 and DOUBLE COMPLEX as a synonym for
COMPLEX*16.

* inatype declaration statement, each item can be initialized by following the name or
array declarator with an initial value contained between slashes.

e in certain cases, missing mandatory commas in format specifications are allowed.
e Lahey NAMELIST formatting.

242 Lahey Fortran 90 Language Reference

Popular Extensions

Lahey Bwv.d[De] edit descriptor.
the use of the numbers 2 through 9 for carriage control in formatted output.

a comma in a numeric input field terminates the field regardless of whether the spec-
ified width has been exhausted.

the edit descriptors Q, \, and $.
the RESULT option may be omitted from scalar recursive functions.

various intrinsic procedures documented in blue in the app&mdixsic
Procedures.”

the Lahey RND, RRAND, and RANDS random number routines and DATE and
TIME subroutines.

Lahey Fortran 90 Language Reference 243

Appendix A Fortran 77 Compatibility

244 Lahey Fortran 90 Language Reference

New In Fortran 90

The following Fortran 90 features were not present in Fortran 77.

Miscellaneous
» free source form
* enhancements to fixed source form:
“" statement separator
“I” trailing comment
e names may be up to 31 characters in length
» both upper and lower case characters are accepted
* INCLUDE line
» relational operators in mathematical notation
* enhanced END statement
* IMPLICIT NONE
* binary, octal, and hexadecimal constants
e quotation marks around CHARACTER constants

Data
» enhanced type declaration statements
e new attributes:
extended DIMENSION attribute
ALLOCATABLE
POINTER
TARGET
INTENT
PUBLIC
PRIVATE
» kind and length type parameters
» derived types
* pointers

Lahey Fortran 90 Language Reference 245

Appendix B New in Fortran 90

Operations

« extended intrinsic operators
* extended assignment

» user-defined operators

Arrays

e automatic arrays

« allocatable arrays

» assumed-shape arrays

* array sections

* array expressions

* masked array assignment (WHERE statement and construct)

Execution Control

e« CASE construct

* enhance DO construct
¢ CYCLE statement

e EXIT statement

Input/Output

e binary, octal, and hexadecimal edit descriptors
» engineering and scientific edit descriptors

* namelist formatting

» partial record capabilities (non-advancing I/O)
» extra OPEN and INQUIRE specifiers

Procedures

» keyword arguments

e optional arguments

e INTENT attribute

» derived type actual arguments and functions
» array-valued functions

e recursive procedures

« user-defined generic procedures

« elemental intrinsic procedures

» specification of procedure interfaces
« internal procedures

Modules

New Intrinsic Procedures
« PRESENT
* numeric functions

246 Lahey Fortran 90 Language Reference

CEILING

FLOOR

MODULO

character functions
ACHAR

ADJUSTL

ADJUSTR

IACHAR

LEN_TRIM

REPEAT

SCAN

TRIM

VERIFY

Kind Functions

KIND
SELECTED_INT_KIND
SELECTED_REAL_KIND
LOGICAL

numeric inquiry functions
DIGITS

EPSILON

HUGE
MAXEXPONENT
MINEXPONENT
PRECISION

RADIX

RANGE

TINY

BIT_SIZE

bit manipulation functions
BTEST

IAND

IBCLR

IBITS

IBSET

IEOR

IOR

ISHFT

ISHFTC

NOT

TRANSFER
floating-point manipulation functions
EXPONENT
FRACTION

Lahey Fortran 90 Language Reference 247

Appendix B New in Fortran 90

NEAREST
RRSPACING
SCALE
SET_EXPONENT
SPACING

* vector and matrix multiply functions
DOT_PRODUCT
MATMUL

» array reduction functions
ALL
ANY
COUNT
MAXVAL
MINVAL
PRODUCT
SUM

e array inquiry functions
ALLOCATED
LBOUND
SHAPE
SIZE
UBOUND

e array construction functions
MERGE
FSOURCE
PACK
SPREAD
UNPACK

+ RESHAPE

» array manipulation functions
CSHFT
EOSHIFT
TRANSPOSE

» array location functions
MAXLOC
MINLOC

* ASSOCIATED

* intrinsic subroutines
DATE_AND_TIME
MVBITS
RANDOM_NUMBER
RANDOM_SEED
SYSTEM_CLOCK

248 Lahey Fortran 90 Language Reference

Intrinsic Procedures

The tables in this chapter offer a synopsis of procedures included with Lahey Fortran. For
detailed information on individual procedures, see the chaphenabetical Referencebn
page 59.

All procedures in these tables are intrinsic. VAX/IBM extension procedures, indicated with
a dagger, require th@axcompiler switch.

Specific function names may be passed as actual arguments except for where indicated by an
asterisk in the tables. Note that for almost all programming situations it is best to use the
generic procedure name.

Lahey Fortran 90 Language Reference 249

Appendix C

Intrinsic Procedures

250

Table 12: Numeric Functions

Name A i
Specific Function Type rgumen Description Class
Type
Names
ABS Numeric Numeric
CABS REAL_4 COMPLEX_4
CDABST REAL_8 COMPLEX_8
DABS REAL_8 REAL_8
IABS INTEGER 4 INTEGER 4 Absolute Value. Elemental
I2ABS INTEGER_2 INTEGER_2
IIABST INTEGER_2 INTEGER_2
JIABST INTEGER_4 INTEGER_4
AIMAG | REAL compLex | o0t e | Elementa
DIMAGT REAL_8 COMPLEX_8 P
number.
AINT REAL REAL Truncation to a Elemental
DINT REAL_8 REAL_8 whole number.
REAL represen-
ANINT REAL REAL tation of the near- Elemental
DNINT REAL_8 REAL_8 est whole
number.
Smallest INTE-
CEILING | INTEGER 4 | REAL GER greater Elemental
- than or equal to a
number.
CMPLX COMPLEX Numeric Convert to type Elemental
DCMPLXTt COMPLEX_ 8 Numeric COMPLEX.
CONJG COMPLEX COMPLEX Conjugate of a Elemental
DCONJGt | COMPLEX_8 COMPLEX_8 complex number.
DBLE REAL 8 Numeric Convert to dou-
DREALT* REAL_8 COMPLEX_8 ble-precision Elemental
DFLOATt* | REAL 8 INTEGER_4 REAL type.

Lahey Fortran 90 Language Reference

Table 12: Numeric Functions

Name

Specific Function Type AEJUE Description Class
Type
Names
DIM INTEGER or INTEGER or The difference
REAL REAL between two
DDIM REAL_8 REAL_8 .
iy iy numbers if the

IDIM INTEGER 4 INTEGER 4 difference is pos- Elemental

12DIM INTEGER_2 INTEGER_2 itive: zero oth%r—

IIDIMT INTEGER_2 INTEGER_2 wisé

JIDIMT INTEGER 4 INTEGER 4 '
Double-preci-

DPROD REAL_8 REAL_4 sion REAL prod- | Elemental
uct.
Exponent part of

EXPO- the model repre-

NENT REAL REAL sentation of a Elemental
number.
Greatest INTE-

FLOOR INTEGER 4 REAL GER less than or | ¢ o i
equal to a num-
ber.
Fraction part of

FRAC- the physical rep-

TION REAL REAL resentation of a Elemental
number.

INT INTEGER Numeric

IDINT* INTEGER REAL_8

IFIX* INTEGER REAL_4

INT2* INTEGER_2 Numeric

INT4* INTEGER_4 Numeric

HFIXT* INTEGER_2 REAL_4 Convert to INTE- Elemental

IINT* INTEGER_2 REAL_4 GER type.

JINT* INTEGER_4 REAL_4

IIDINTT* INTEGER_2 REAL_8

JIDINTH* INTEGER_4 REAL_8

IHFIXT* INTEGER_2 REAL_4

JIFIXT* INTEGER_4 REAL_4

Lahey Fortran 90 Language Reference 251

Appendix C

Intrinsic Procedures

Table 12: Numeric Functions

Name
Specific Function Type Argument Description Class
Type
Names
MAX INTEGER or INTEGER or
REAL REAL
AMAXO0* REAL_4 INTEGER_4
AMAX1* REAL_4 REAL_4
DMAX1* REAL_8 REAL_8
MAXO0* INTEGER_4 INTEGER_4
MAX1* INTEGER 4 REAL_4 Maximum value Elemental
I2MAXO* INTEGER_2 INTEGER_2 '
IMAXOt* INTEGER_2 INTEGER_2
JMAXO0T* INTEGER_4 INTEGER_4
IMAX1t* INTEGER_2 REAL_4
JMAX1t* INTEGER_4 REAL_4
AIMAXOt* REAL_4 INTEGER_2
AJMAXOT* | REAL_4 INTEGER_4
MIN INTEGER or INTEGER or
REAL REAL
AMINO* REAL_4 INTEGER_4
AMIN1* REAL 4 REAL_4
DMIN1* REAL_8 REAL_8
MINO* INTEGER 4 INTEGER_4
MINL* INTEGER 4 REAL 4 Minimum value Elemental
[2MINO* INTEGER_2 INTEGER_2 '
IMINOt* INTEGER_2 INTEGER_2
JMINOT* INTEGER 4 INTEGER_4
IMINL1t* INTEGER_2 REAL_4
JMIN1t* INTEGER_4 REAL_4
AIMINOT* REAL_4 INTEGER_2
AJMINOT* REAL_4 INTEGER_4
MOD INTEGER or INTEGER or
REAL REAL
AMOD REAL_4 REAL_4
DMOD REAL_8 REAL_8 Remainder. Elemental
I2MOD INTEGER_2 INTEGER_2
IMODt INTEGER_2 INTEGER_2
JMODTt INTEGER_4 INTEGER_4

252 Lahey Fortran 90 Language Reference

Table 12: Numeric Functions

Name A i
Specific Function Type rgumen Description Class
Type
Names
INTEGER or INTEGER or
MODULO REAL REAL Modulo. Elemental
Nearest number
NEAREST | REAL REAL ofagivendata | g o)
type in a given
direction.
NINT INTEGER REAL
IDNINT INTEGER_4 REAL_8
I2NINT INTEGER_2 REAL
ININTt INTEGER 4 | REAL 4 geE‘:eSt INTE= | Elemental
JNINTT INTEGER_2 REAL 4)
IIDNNTT INTEGER_2 REAL_8
JIDNNTT INTEGER_4 REAL_8
REAL REAL Numeric
FLOAT* REAL_4 INTEGER
SNGL* REAL_4 REAL_8
FLOATI*t | REAL_4 INTEGER_2 tcozve” ©OREAL | Elemental
FLOATJ*t | REAL_4 INTEGER_4 ype.
DFLOTI*t REAL_8 INTEGER_2
DFLOTJ*t REAL_8 INTEGER_4
Reciprocal of rel-
RRSPAC- | peaL REAL ative spacing Elemental
ING near a given
number.
Multiply a num-
REAL and
SCALE REAL INTEGER ber by a power of | Elemental
two.
Model represen-
tation of a num-
SET_ .
EXPO- REAL REAL and ber with Elemental
INTEGER exponent part set
NENT
to a power of
two.

Lahey Fortran 90 Language Reference 253

Appendix C

Intrinsic Procedures

254

Table 12: Numeric Functions

Name
Specific Function Type Argument Description Class
Type
Names
SIGN INTEGER or INTEGER or
REAL REAL

DSIGN REAL_8 REAL_8

ISIGN INTEGER_4 INTEGER_4 Transfer of sign. Elemental

I2SIGN INTEGER_2 INTEGER_2

[ISIGNT INTEGER_2 INTEGER_2

JISIGNT INTEGER_4 INTEGER_4
Absolute spacing

SPACING REAL REAL near a given Elemental
number.

Lahey Fortran 90 Language Reference

Table 13: Mathematical Functions

Name A i
Specific Function Type rgumen Description Class
Type
Names
ACOS REAL REAL Arccosine Elemental
DACOS REAL_8 REAL_8 ’
ASIN REAL REAL Arcsine Elemental
DASIN REAL_8 REAL_8 '
ATAN REAL REAL Arctangent Elemental
DATAN REAL_8 REAL_8 gent.
Arctangent ofy/x
ATANZ | REAL REAL ofthe argument | Elementa
DATAN2 REAL_8 REAL_8 9
- - of the complex
number K.y)).

COS REAL or REAL or

COMPLEX COMPLEX
CCOS COMPLEX_4 COMPLEX_4 Cosine. Elemental
CDCOSt COMPLEX_8 | COMPLEX_8
DCOS REAL_8 REAL_8
COSH REAL REAL Hyperbolic Elemental
DCOSH REAL_8 REAL_8 cosine.
EXP REAL or REAL or

COMPLEX COMPLEX
CEXP COMPLEX 4 COMPLEX 4 Exponential. Elemental
CDEXPT COMPLEX_8 COMPLEX_8
DEXP REAL_8 REAL_8
LOG REAL or REAL or

COMPLEX COMPLEX
ALOG REAL_4 REAL_4 Natural loga- Elemental
CLOG COMPLEX_4 COMPLEX_4 rithm.
CDLOGT COMPLEX_8 COMPLEX_8
DLOG REAL 8 REAL_S8
LOG10 REAL REAL Common loga-
ALOG10 REAL_4 REAL_4 rithm g Elemental
DLOG10 REAL_S8 REAL_S8 '

Lahey Fortran 90 Language Reference 255

Appendix C

Intrinsic Procedures

256

Table 13: Mathematical Functions
Name A i
Specific Function Type rgumen Description Class
Type
Names
SIN REAL or REAL or
COMPLEX COMPLEX
CSIN COMPLEX_4 COMPLEX_4 Sine. Elemental
CDSINT COMPLEX_8 COMPLEX_8
DSIN REAL_8 REAL_8
SINH REAL REAL Hyperbolic sine Elemental
DSINH REAL 8 REAL 8 yp '
SQRT REAL or REAL or
COMPLEX COMPLEX
CSQRT COMPLEX_4 COMPLEX_4 Square root. Elemental
CDSQRTt | COMPLEX_8 COMPLEX_ 8
DSQRT REAL_8 REAL_8
TAN REAL REAL Tangent Elemental
DTAN REAL 8 REAL 8 gent.
TANH REAL REAL Hyperbolic tan- Elemental
DTANH REAL_8 REAL_8 gent.

Lahey Fortran 90 Language Reference

Table 14: Character Functions

Name Description Class

ACHAR Chargcter in a specified position of the ASCII Elemental
collating sequence.

ADJUSTL Adjus't to thgileft, removing leading blanks and Elemental
inserting trailing blanks.

ADJUSTR Adjus't to the Ught, removing trailing blanks and Elemental
inserting leading blanks.

CHAR G_|ven character in the collating sequence of the aEIementaI
given character set.

IACHAR Position of a character in the ASCII collating Elemental
sequence.
Position of a character in the processor collating

ICHAR sequence associated with the kind of the chara¢-Elemental
ter.

INDEX Starting position of a substring within a string. Elemental

LEN Length of a CHARACTER data object. Inquiry

LEN TRIM !_ength of a CHARACTER entity without trail- Elemental

- ing blanks.

Test whether a string is lexically greater than or

LGE equal to another string based on the ASCII col-| Elemental
lating sequence.
Test whether a string is lexically greater than

LGT another string based on the ASCII collating Elemental
sequence.
Test whether a string is lexically less than or

LLE equal to another string based on the ASCII col-| Elemental
lating sequence.
Test whether a string is lexically less than

LLT another string based on the ASCII collating Elemental
sequence.

REPEAT Concatenate copies of a string. :i'cr)?]r;forma-

Lahey Fortran 90 Language Reference 257

Appendix C Intrinsic Procedures
Table 14: Character Functions

Name Description Class

SCAN Scan a string for any one of a set of characters. Elementa

TRIM Omit trailing blanks. Transforma-
tional

VERIFY Verify that a set of characters contains all the Elemental

characters in a string.
258 Lahey Fortran 90 Language Reference

Table 15: Array Functions

Name Description Class
ALL Determine whether all values in a mask are trug Transforma-
along a given dimension. tional
ALLOCATED Indicate whether an allocatable array has been Inquiry
allocated.
ANY Determine whether any values are true in a masgkrransforma-
along a given dimension. tional
Count the number of true elements in a mask | Transforma-
COUNT : X . X
along a given dimension. tional
Circular shift of all rank one sections in an array|.
Elements shifted out at one end are shifted in at Transforma-
CSHIFT the other. Different sections can be shifted by tional
different amounts and in different directions by
using an array-valued shift.
DOT_ S Transforma-
PRODUCT Dot-product multiplication of vectors. tional
End-off shift of all rank one sections in an array
Elements are shifted out at one end and copies|of
EOSHIET boundary values are shifted in at the other. Dif{ Transforma-
ferent sections can be shifted by different tional
amounts and in different directions by using an
array-valued shift.
LBOUND Lower bounds of an array or a dimension of an Inquiry
array.
MATMUL Matrix multiplication. Transforma-
tional
Location of the first element iarray having the Transforma-
MAXLOC maximum value of the elements identified by tional
mask.
Maximum value of elements of an array, along @& Transforma-
MAXVAL :))) .)
given dimension, for which a mask is true. tional
MERGE Choose alternative values based on the value of Blemental

mask.

Lahey Fortran 90 Language Reference 259

Appendix C Intrinsic Procedures
Table 15: Array Functions
Name Description Class
Location of the first element iarray having the Transforma-
MINLOC minimum value of the elements identified by tional
mask.
Minimum value of elements of an array, along g Transforma-
MINVAL . . . - . .
given dimension, for which a mask is true. tional
Pack an array into a vector under control of a | Transforma-
PACK -
mask. tional
PRODUCT P.roduc'F of elemeqts of an array, along a given Transforma—
dimension, for which a mask is true. tional
RESHAPE Cpnstruct an array of a specified shape from a Transforma-
given array. tional
SHAPE Shape of an array. Inquiry
SIZE Size of an array or a dimension of an array. Inquiry
Adds a dimension to an array by adding copies| Transforma-
SPREAD . . ; . .
of a data object along a given dimension. tional
Sum of elements of an array, along a given Transforma-
SUM : . . . :
dimension, for which a mask is true. tional
TRANSPOSE Transpose an array of rank two. :i'(r)?]r;forma—
UBOUND Upper bounds of an array or a dimension of an Inquiry
array.
UNPACK Unpack an array of rank one into an array undef Transforma-
control of a mask. tional
260 Lahey Fortran 90 Language Reference

Table 16: Inquiry and Kind Functions

Name Description Class

ALLOCATED Indicate whether an allocatable array has been Inquiry
allocated.

ASSOCIATED Indicate whether a pointer is associated with a Inquiry
target.

BIT_SIZE Size, in bits, of a data object of type INTEGER. Inquiry

DIGITS Number of significant binary digits. Inquiry

EPSILON P05|t!ve value that is almost negligible comparedInquiry
to unity.

HUGE Largest representable number of data type. Inquiry

KIND Kind type parameter. Inquiry

LBOUND Lower bounds of an array or a dimension of an Inquiry
array.

LEN Length of a CHARACTER data object. Inquiry

MAXEXPO- Maximum binary exponent of data type. Inquiry

NENT

MINEXPO- - . .

NENT Minimum binary exponent of data type. Inquiry

PRECISION Decimal precision of data type. Inquiry

PRESENT Determine whether an optional argument is Inquiry
present.

RADIX Number base of the physical representation of a Inquiry
number.

RANGE Decimal range of the data type of a number. Inquiry

SELECTED Kind type paramet_er of an INTEG_ER data type Transforma-
that represents all integer valuewith .

INT_KIND r r tional

- -10 <n<10.
SeLECTED | {10 Ve Pt o REALSmaNPe" | manstoma.
REAL_KIND P aptilg tional

mal exponent range of at least

Lahey Fortran 90 Language Reference 261

Appendix C Intrinsic Procedures

Table 16: Inquiry and Kind Functions

Name Description Class

SHAPE Shape of an array. Inquiry

SIZE Size of an array or a dimension of an array. Inquiry

TINY Smallest representable positive number of data Inquiry
type.

UBOUND ;er?gsr bounds of an array or a dimension of an Inquiry

262 Lahey Fortran 90 Language Reference

Table 17: Bit Manipulation Procedures

Name A i
Specific Function Type rgumen Description Class
Type

Names
BTEST LOGICAL_4 INTEGER_4
BITESTTt LOGICAL_4 INTEGER_2 Bit testing. Elemental
BJTESTT LOGICAL_4 INTEGER_4
IAND INTEGER INTEGER Bit-wise logical
IIANDT INTEGER_2 INTEGER_2 AND 9 Elemental
JIANDT INTEGER_4 INTEGER_4 ’
IBCLR INTEGER INTEGER Clear one bit to
IIBCLRT INTEGER_2 INTEGER_2 . Elemental
JIBCLRT INTEGER_4 INTEGER_4 ’
IBITS INTEGER INTEGER

Extract a
IBITST INTEGER_2 INTEGER_2 sequence of bits Elemental
JIBITST INTEGER_4 INTEGER_4 q '
IBSET INTEGER INTEGER
IIBSETT INTEGER_2 INTEGER_2 Set a bit to one. Elemental
JIBSETT INTEGER_4 INTEGER_4
IEOR INTEGER INTEGER Bit-wise logical
IIEOR? INTEGER_2 INTEGER_2 exclusive gR Elemental
JIEORT INTEGER_4 INTEGER_4 ’
IOR INTEGER INTEGER Bit-wise loaical
IIORT INTEGER_2 INTEGER_2 inclusive OgR Elemental
JIORT INTEGER_4 INTEGER_4 '
ISHFT INTEGER INTEGER
IISHFTT INTEGER_2 INTEGER_2 Bit-wise shift. Elemental
JISHFTT INTEGER_4 INTEGER_4
ISHFTC INTEGER INTEGER Bit-wise circular
ISHFTCT INTEGER_2 INTEGER_2 shift of rightmost | Elemental
JISHFTCt | INTEGER_4 INTEGER_4 bits.

Copy a sequence
MVBITS INTEGER of bits from one | ¢, 6 tine

INTEGER data
object to another.

Lahey Fortran 90 Language Reference 263

Appendix C

Intrinsic Procedures

264

Table 17: Bit Manipulation Procedures

Name A i
Specific Function Type rgumen Description Class
Type
Names
NOT INTEGER INTEGER Bit-wise loical
INOTt INTEGER_2 INTEGER_2 com Ieme?]t Elemental
JNOTY INTEGER_4 INTEGER_4 P '
Table 18: Other Intrinsic Functions

Name Description Class
LOGICAL Convert between kinds of LOGICAL. Elemental
NULL Disassociated pointer. Elemental

Interpret the physical representation of a number

) . Transforma-

TRANSFER with the type and type parameters of a given tional

number.

Table 19: Standard Intrinsic Subroutines
Name Description Class
CPU_TIME CPU time. Subroutine
DATE_AND_ Date and real-time clock data. Subroutine
TIME
MVBITS Copy a sequence of bits from one INTEGER Subroutine

data object to another.
RANDOM _ Uniformly distributed pseudorandom number or Subroutine
NUMBER numbers in the rangé< x<1

Set or query the pseudorandom number generg-
RANDOM _ tor used by RANDOM_NUMBER. If no argu- Subroutine
SEED ment is present, the processor sets the seed to|a

predetermined value.
SYSTEM_ : .
CLOCK INTEGER data from the real-time clock. Subroutine

Lahey Fortran 90 Language Reference

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name

Specific Function Type Argument Description Class
Type

Names
ACOSDT REAL_4 REAL_4 Arccosine in Elemental
DACOSDT REAL_8 REAL_8 degrees.
ALGAMAT REAL_4 REAL_4 Log gamma func- Elemental
DLGAMAT | REAL_8 REAL_8 tion.
ASINDT REAL_4 REAL_4 Arcsine in Elemental
DASINDt REAL_8 REAL_8 degrees.
ATANDT REAL_4 REAL_4 Arctangent in Elemental
DATANDT REAL_8 REAL_8 degrees.

Arctangent ofy/x

(principal value
ATAN2D?t REAL_4 REAL_4 of the argument Elemental
DATAN2DT | REAL_8 REAL_8 of the complex

number K,y)) in

degrees.
COSDft REAL 4 REAL 4 Cosine in Elemental
DCOSDT REAL 8 REAL_8 degrees.
COTANT REAL_4 REAL_4 Contangent Elemental
DCOTANT REAL_8 REAL_8 gent.
ERFt REAL_4 REAL_4 .
DERFt REAL 8 REAL 8 Error function. Elemental
ERFCT REAL_4 REAL_4 Error function Elemental
DERFCY REAL_8 REAL 8 complement.
GAMMAT REAL_4 REAL 4 Gamma function Elemental
DGAMMAT | REAL_8 REAL_8 '
SINDT REAL_4 REAL_4 Sine in degrees Elemental
DSIND*t REAL 8 REAL 8 grees.
TANDT REAL_4 REAL_4 Tangent in Elemental
DTANDT REAL 8 REAL 8 degrees.

Lahey Fortran 90 Language Reference 265

Appendix C

Intrinsic Procedures

Table 20: VAX/IBM Intrinsic Functions Without Fortran 90 Equivalents

Name
Specific Function Type Argument Description Class
Type
Names
IZEXTt INTEGER_2 LOGICAL_1
IZEXT2t INTEGER_2 INTEGER_2
JZEXTt INTEGER_4 LOGICAL_4 Zero extend. Elemental
JZEXT2t INTEGER_4 INTEGER_2
JZEXT4t INTEGER_4 INTEGER_4

266 Lahey Fortran 90 Language Reference

Table 21: Utility Procedures

Name Description Class
Handle break interrupts during execution of the| Utility
BREAK .
program. Subroutine
Pasdtemto a procedure as a C data type by Utilt
CARG value. CARG can only be used as an actual Y
Function
argument.
DLL EXPORT Spemfy W'hlch'procedures should be available in &tility .
- dynamic-link library. Subroutine
DLL IMPORT Specify \/}/hlf:h p_rocedures are to be imported frontility _
— a dynamic-link library. Subroutine
The initial invocation of the DVCHK subroutine
masks the divide-by-zero interrupt on the float-
ing-point unit. Subsequent envocations return
true or false in thélag variable if the exception | Utility
DVCHK . .
has occurred or not occurred, respectively. Subroutine
DVCHK will not check or mask zero divided by
zero. Use INVALOP to check for a zero divided
by zero.
Print a message to the console with a subpro- | Utility
ERROR . . .
gram traceback, then continue processing. Subroutine
Terminate the program and set the DOS error | Utility
EXIT .
level. Subroutine
Empty the buffer for an input/output unit by Utilit
FLUSH writing to its corresponding file. Note that this Subr{)utine
does not flush the DOS file buffer.
GETCL Get command line. Utility .
Subroutine
- . . Utility
GETENV Get the specified environment variable. .
Function
. Utility
INTRUP Execute a DOS or BIOS function. .
Subroutine

Lahey Fortran 90 Language Reference 267

Appendix C

Intrinsic Procedures

268

Table 21: Utility Procedures

Name Description Class
The initial invocation of the INVALOP subrou-
tine masks the invalid operator interrupt on the
INVALOP floating-point unit. Subsequent envocations Utility
return true or false in tHéag variable if the Subroutine
exception has occurred or not occurred, respect
tively.
Get a runtime 1/O error message then continue | Utility
IOSTAT_MSG processing. Subroutine
NBREAK Ignore break interrupts. gt:ltl)tr{)utine
. . . Utility
NDPERR Report floating point exceptions. Function
. . . Utility
NDPEXC Mask all floating point exceptions. Subroutine
Get the DOS offset portion of the memory Utilt
OFFSET address of a variable, substring, array reference, Fungf[ion
or external subprogram.
The initial invocation of the OVEFL subroutine
masks the overflow interrupt on the floating- Utilit
OVEFL point unit. Subsequent envocations return true O%ubr)(l)utine
false in thdflag variable if the exception has
occurred or not occurred, respectively.
POINTER Get the memory address of a variable, substring, Utility
array reference, or external subprogram. Function
Set fill character for numeric fields that are wider Utilit
PRECFILL than supplied numeric precision. The default is Subr{)utine
‘0.
PROMPT Set prompt for subsequent READ statements. | Utility
Fortran default is no prompt. Subroutine
Get the DOS segment portion of the memory Utilt
SEGMENT address of a variable, substring, array reference, Fung{[ion

or external subprogram.

Lahey Fortran 90 Language Reference

Table 21: Utility Procedures

Name Description Class

Execute a DOS command as if from the DOS | Utility

SYSTEM command line. Subroutine

The initial invocation of the UNDFL subroutine
masks the underflow interrupt on the floating-
UNDFL point unit. Subsequent envocations return true
false in thdflag variable if the exception has
occurred or not occurred, respectively.

OUtiIity
%ubroutine

Pass an item to a procedure by value. VAL can Utility

VAL only be used as an actual argument. Function

Causes a Windows 3.1 program to yield control|to
Windows so that computation-intensive operatignltility
do not monopolize the processor. YIELD has npFunction
effect under other supported operating systems|

YIELD

Lahey Fortran 90 Language Reference 269

Appendix C Intrinsic Procedures

270 Lahey Fortran 90 Language Reference

Glossary

action statement: A single statement specifying a computational action.

actual argument: An expression, a variable, a procedure, or an alternate return specifier that
is specified in a procedure reference.

allocatable array: A named array having the ALLOCATABLE attribute. Only when it has
space allocated for it does it have a shape and may it be referenced or defined.

argument: An actual argument or a dummy argument.

argument association: The relationship between an actual argument and a dummy argu-
ment during the execution of a procedure reference.

argument keyword: A dummy argument name. It may be used in a procedure reference
ahead of the equals symbol provided the procedure has an explicit interface.

array: A set of scalar data, all of the same type and type parameters, whose individual ele-
ments are arranged in a rectangular pattern. It may be a named array, an array section, a
structure component, a function value, or an expression. lIts rank is at least one.

array element: One of the scalar data that make up an array that is either named or is a struc-
ture component.

array pointer: A pointer to an array.

array section: A subobject that is an array and is not a structure component.
array-valued: Having the property of being an array.

assignment statement:A statement of the formvariable = expressich
association: Name association, pointer association, or storage association.

assumed-size array:A dummy array whose size is assumed from the associated actual argu-
ment. Its last upper bound is specified by an asterisk.

attribute: A property of a data object that may be specified in a type declaration statement.

Lahey Fortran 90 Language Reference 271

Appendix D Glossary

272

automatic data object: A data object that is a local entity of a subprogram, that is not a
dummy argument, and that has a nonconstant CHARACTER length or array bound.

belong: If an EXIT or a CYCLE statement contains a construct name, the statement belongs
to the DO construct using that name. Otherwise, it belongs to the innermost DO construct in
which it appears.

block: A sequence of executable constructs embedded in another executable construct,
bounded by statements that are particular to the construct, and treated as an integral unit.

block data program unit: A program unit that provides initial values for data objects in
named common blocks.

bounds: For a named array, the limits within which the values of the subscripts of its array
elements must lie.

character: A letter, digit, or other symbol.
character string: A sequence of characters numbered from left toright 1, 2, 3, . . .

collating sequence:An ordering of all the different characters of a particular kind type
parameter.

common block: A block of physical storage that may be accessed by any of the scoping units
in an executable program.

component: A constituent of a derived type.

conformable: Two arrays are said to be conformable if they have the same shape. A scalar
is conformable with any array.

conformance: An executable program conforms to the standard if it uses only those forms
and relationships described therein and if the executable program has an interpretation
according to the standard. A program unit conforms to the standard if it can be included in
an executable program in a manner that allows the executable program to be standard con-
forming. A processor conforms to the standard if it executes standard-conforming programs
in a manner that fulfills the interpretations prescribed in the standard.

connected:
For an external unit, the property of referring to an external file.

For an external file, the property of having an external unit that refers to it.

constant: A data object whose value must not change during execution of an executable pro-
gram. It may be a named constant or a literal constant.

constant expression:An expression satisfying rules that ensure that its value does not vary
during program execution.

construct: A sequence of statements starting with a CASE, DO, IF, or WHERE statement
and ending with the corresponding terminal statement.

data: Plural of datum.

Lahey Fortran 90 Language Reference

data entity: A data object, the result of the evaluation of an expression, or the result of the
execution of a function reference (called the function result). A data entity has a data type
(either intrinsic or derived) and has, or may have, a data value (the exception is an undefined
variable). Every data entity has a rank and is thus either a scalar or an array.

data object: A data entity that is a constant, a variable, or a subobject of a constant.

data type: A named category of data that is characterized by a set of values, together with a
way to denote these values and a collection of operations that interpret and manipulate the
values. For an intrinsic type, the set of data values depends on the values of the type
parameters.

datum: A single quantity that may have any of the set of values specified for its data type.

definable: A variable is definable if its value may be changed by the appearance of its name
or designator on the left of an assignment statement. An allocatable array that has not been
allocated is an example of a data object that is not definable. An example of a subobject that
is not definable i€ whenC s an array that is a constant anid an INTEGER variable.

defined: For a data object, the property of having or being given a valid value.

defined assignment statementAn assignment statement that is not an intrinsic assignment
statement and is defined by a subroutine and an interface block that specifies ASSIGNMENT

=).

defined operation: An operation that is not an intrinsic operation and is defined by a func-
tion that is associated with a generic identifier.

derived type: A type whose data have components, each of which is either of intrinsic type
or of another derived type.

designator: See subobject designator.

disassociated:A pointer is disassociated following execution of a DEALLOCATE or NUL-
LIFY statement, or following pointer association with a disassociated pointer.

dummy argument: An entity whose name appears in the parenthesized list following the
procedure name in a FUNCTION statement, a SUBROUTINE statement, an ENTRY state-
ment, or a statement function statement.

dummy array: A dummy argument that is an array.
dummy pointer: A dummy argument that is a pointer.
dummy procedure: A dummy argument that is specified or referenced as a procedure.

elemental: An adjective applied to an intrinsic operation, procedure, or assignment state-
ment that is applied independently to elements of an array or corresponding elements of a set
of conformable arrays and scalars.

Lahey Fortran 90 Language Reference 273

Appendix D Glossary

274

entity: The term used for any of the following:program unit, a procedure, an operator, an
interface block, a common block, an external unit, a statement function, a type, a named vari-
able, an expression, a component of a structure, a named constant, a statement label, a
construct, or a namelist group.

executable construct: A CASE, DO, IF, or WHERE construct or an action statement.
executable program: A set of program units that includes exactly one main program.

executable statement:An instruction to perform or control one or more computational
actions.

explicit interface: For a procedure referenced in a scoping unit, the property of being an
internal procedure, a module procedure, an intrinsic procedure, an external procedure that has
an interface block, a recursive procedure reference in its own scoping unit, or a dummy pro-
cedure that has an interface block.

explicit-shape array: A named array that is declared with explicit bounds.

expression: A sequence of operands, operators, and parentheses. It may be a variable, a con-
stant, a function reference, or may represent a computation.

extent: The size of one dimension of an array.

external file: A sequence of records that exists in a medium external to the executable
program.

external procedure: A procedure that is defined by an external subprogram or by a means
other than Fortran.

external subprogram: A subprogram that is not contained in a main program, module, or
another subprogram.

external unit: A mechanism that is used to refer to an external file. Itis identified by a non-
negative INTEGER.

file: Aninternal file or an external file.
function: A procedure that is invoked in an expression.
function result: The data object that returns the value of a function.

function subprogram: A sequence of statements beginning with a FUNCTION statement
that is not in an interface block and ending with the corresponding END statement.

generic identifier: A lexical token that appears in an INTERFACE statement and is associ-
ated with all the procedures in the interface block.

global entity: An entity identified by a lexical token whose scope is an executable program.
It may be a program unit, a common block, or an external procedure.

Lahey Fortran 90 Language Reference

host: A main program or subprogram that contains an internal procedure is called the host
of the internal procedure. A module that contains a module procedure is called the host of
the module procedure.

host association: The process by which an internal subprogram, module subprogram, or
derived type definition accesses entities of its host.

initialization expression: An expression that can be evaluated at compile time.

implicit interface: A procedure referenced in a scoping unit other than its own is said to
have an implicit interface if the procedure is an external procedure that does not have an inter-
face block, a dummy procedure that does not have an interface block, or a statement function.

inquiry function: An intrinsic function whose result depends on properties of the principal
argument other than the value of the argument.

intent: An attribute of a dummy argument that is neither a procedure nor a pointer, which
indicates whether it is used to transfer data into the procedure, out of the procedure, or both.

instance of a subprogram: The copy of a subprogram that is created when a procedure
defined by the subprogram is invoked.

interface block: A sequence of statements from an INTERFACE statement to the corre-
sponding END INTERFACE statement.

interface body: A sequence of statements in an interface block from a FUNCTION or SUB-
ROUTINE statement to the corresponding END statement.

interface of a procedure: See procedure interface.

internal file: A CHARACTER variable that is used to transfer and convert data from inter-
nal storage to internal storage.

internal procedure: A procedure that is defined by an internal subprogram.
internal subprogram: A subprogram contained in a main program or another subprogram.

intrinsic: An adjective applied to types, operations, assignment statements, and procedures
that are defined in the standard and may be used in any scoping unit without further definition
or specification.

invoke:
To call a subroutine by a CALL statement or by a defined assignment statement.

To call a function by a reference to it by name or operator during the evaluation of
an expression.

keyword: Statement keyword or argument keyword.

kind type parameter: A parameter whose values label the available kinds of an intrinsic
type.

label: See statement label.

Lahey Fortran 90 Language Reference 275

Appendix D Glossary

276

length of a character string: The number of characters in the character string.

lexical token: A sequence of one or more characters with an indivisible interpretation.
line: A source-form record containing from 0 to 132 characters.

literal constant: A constant without a name.

local entity: An entity identified by a lexical token whose scope is a scoping unit.

main program: A program unit that is not a module, subprogram, or block data program
unit.

module: A program unit that contains or accesses definitions to be accessed by other pro-
gram units.

module procedure: A procedure that is defined by a module subprogram.

module subprogram: A subprogram that is contained in a module but is not an internal
subprogram.

name: A lexical token consisting of a letter followed by up to 30 alphanumeric characters
(letters, digits, and underscores).

name association;Argument association, use association, or host association.
named: Having a name.

named constant: A constant that has a name.

numeric type: INTEGER, REAL or COMPLEX type.

object: Data object.

obsolescent feature:A feature in FORTRAN 77 that is considered to have been redundant
but that is still in frequent use.

operand: An expression that precedes or succeeds an operator.
operation: A computation involving one or two operands.
operator: A lexical token that specifies an operation.

pointer: A variable that has the POINTER attribute. A pointer must not be referenced or
defined unless it is pointer associated with a target. If it is an array, it does not have a shape
unless it is pointer associated.

pointer assignment: The pointer association of a pointer with a target by the execution of a
pointer assignment statement or the execution of an assignment statement for a data object of
derived type having the pointer as a subobject.

pointer assignment statement:A statement of the formpointer-name => targéet

pointer associated: The relationship between a pointer and a target following a pointer
assignment or a valid execution of an ALLOCATE statement.

Lahey Fortran 90 Language Reference

pointer association: The process by which a pointer becomes pointer associated with a
target.

present: A dummy argument is present in an instance of a subprogram if it is associated with
an actual argument and the actual argument is a dummy argument that is present in the invok-
ing procedure or is not a dummy argument of the invoking procedure.

procedure: A computation that may be invoked during program execution. It may be a
function or a subroutine. It may be an intrinsic procedure, an external procedure, a module
procedure, an internal procedure, a dummy procedure, or a statement function. A subpro-
gram may define more than one procedure if it contains ENTRY statements.

procedure interface: The characteristics of a procedure, the name of the procedure, the
name of each dummy argument, and the generic identifiers (if any) by which it may be
referenced.

processor: The combination of a computing system and the mechanism by which executable
programs are transformed for use on that computing system.

program: See executable program and main program.

program unit: The fundamental component of an executable program. A sequence of state-
ments and comment lines. It may be a main program, a module, an external subprogram, or
a block data program unit.

rank: The number of dimensions of an array. Zero for a scalar.
record: A sequence of values that is treated as a whole within a file.

reference: The appearance of a data object name or subobject designator in a context requir-
ing the value at that point during execution, or the appearance of a procedure name, its
operator symbol, or a defined assignment statement in a context requiring execution of the
procedure at that point.

scalar:
A single datum that is not an array.

Not having the property of being an array.

scope: That part of an executable program within which a lexical token has a single inter-
pretation. It may be an executable program, a scoping unit, a single statement, or a part of a
statement.

scoping unit: One of the following:
A derived-type definition,

An interface body, excluding any derived-type definitions and interface bodies con-
tained within it, or

A program unit or subprogram, excluding derived-type definitions, interface bodies,
and subprograms contained within it.

Lahey Fortran 90 Language Reference 277

Appendix D Glossary

278

section subscript: A subscript, vector subscript, or subscript triplet in an array section
selector.

selector: A syntactic mechanism for designating:
Part of a data object. It may designate a substring, an array element, an array section,
or a structure component.

The set of values for which a CASE block is executed.

shape: For an array, the rank and extents. The shape may be represented by the rank-one
array whose elements are the extents in each dimension.

size: For an array, the total number of elements.

specification expressionA scalar INTEGER expression that can be evaluated on entry to
the program unit at the time of execution.

statement: A sequence of lexical tokens. It usually consists of a single line, but the amper-
sand symbol may be used to continue a statement from one line to another and the semicolon
symbol may be used to separate statements within a line.

statement entity: An entity identified by a lexical token whose scope is a single statement
or part of a statement.

statement function: A procedure specified by a single statement that is similar in form to
an assignment statement.

statement keyword: A word that is part of the syntax of a statement and that may be used
to identify the statement.

statement label: A lexical token consisting of up to five digits that precedes a statement and
may be used to refer to the statement.

stride: The increment specified in a subscript triplet.
structure: A scalar data object of derived type.

structure component: The part of a data object of derived type corresponding to a compo-
nent of its type.

subobject: A portion of a named data object that may be referenced or defined indepen-
dently of other portions. It may be an array element, an array section, a structure component,
or a substring.

subobject designator: A name, followed by one or more of the followingomponent
selectors, array section selectors, array element selectors, and substring selectors.

subprogram: A function subprogram or a subroutine subprogram.

subroutine: A procedure that is invoked by a CALL statement or by a defined assignment
statement.

Lahey Fortran 90 Language Reference

subroutine subprogram: A sequence of statements beginning with a SUBROUTINE state-
ment that is not in an interface block and ending with the corresponding END statement.

subscript: One of the list of scalar INTEGER expressions in an array element selector.

subscript triplet: An item in the list of an array section selector that contains a colon and
specifies a regular sequence of INTEGER values.

substring: A contiguous portion of a scalar character string. Note that an array section can
include a substring selector; the result is called an array section and not a substring.

target: A named data object specified in a type declaration statement containing the TAR-
GET attribute, a data object created by an ALLOCATE statement for a pointer, or a subobject
of such an object.

type: Data type.

type declaration statement: An INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
CHARACTER, LOGICAL, or TYPE statement.

type parameter: A parameter of an intrinsic data type. KIND= and LEN= are the type
parameters.

type parameter values: The values of the type parameters of a data entity of an intrinsic
data type.

ultimate component: For a derived-type or a structure, a component that is of intrinsic type
or has the POINTER attribute, or an ultimate component of a component that is a derived
type and does not have the POINTER attribute.

undefined: For a data object, the property of not having a determinate value.

use association:The association of names in different scoping units specified by a USE
statement.

variable: A data object whose value can be defined and redefined during the execution of
an executable program. It may be a named data object, an array element, an array section, a
structure component, or a substring.

vector subscript: A section subscript that is an INTEGER expression of rank one.

whole array: A named array.

Lahey Fortran 90 Language Reference 279

Appendix D Glossary

280 Lahey Fortran 90 Language Reference

ASCII Character Set

FORTRAN programs may use the full ASCII Character Set as listed below. The characters
are listed in collating sequence from first to last. Characters preceded by up arrows (*) are
ASCII Control Characters.

DOS usescontrol-z> (*Z) for the end-of-file delimiter andcontrol-M> (*M) for car-
riage return. To enter these two characters in a CHARACTER constant, use concatenation

and the CHAR function.

Lahey Fortran 90 Language Reference 281

Appendix E ASCII Character Set

282

Attempting to input or outpuiz (end-of-file),"M (new line), orC (break) in a sequential

file is not recommended and may produce undesirable results.

Table 22: ASCII Chart

Characte

HEX

Decimal

ASCII

r Value Value Abbr. DS el
@ 00 0 NUL nullkR>
A 01 1 SOH start of heading
"B 02 2 STX start of text
"C 03 3 ETX break, end of text
"D 04 4 EOT end of transmission
AE 05 5 ENQ enquiry
N 06 6 ACK acknowledge
"G 07 7 BEL bell
"H 08 8 BS backspace
N 09 9 HT horizontal tab
~J 0A 10 LF line feed
K 0B 11 VT vertical tab
AL ocC 12 FF form feed
M oD 13 CR carriage return
N OE 14 SO shift out
O OF 15 Sl shift in
P 10 16 DLE data link escape
"Q 11 17 DC1 device control 1
"R 12 18 DC2 device control 2
S 13 19 DC3 device control 3
AT 14 20 DC4 device control 4
U 15 21 NAK negative acknowledge

Lahey Fortran 90 Language Reference

Table 22: ASCII Chart

Characte HEX Decimal ASCII Description
r Value Value Abbr.
Y 16 22 SYN synchronous idle
W 17 23 ETB end of transmission block
X 18 24 CAN cancel
Y 19 25 EM end of medium
~Z 1A 26 SuB end-of-file
N 1B 27 ESC escape
N 1C 28 FS file separator
A 1D 29 GS group separator
AR 1E 30 RS record separator
A 1F 31 us unit separator
20 32 SP space, blank
! 21 33 ! exclamation point
22 34 “ quotation mark
23 35 # number sign
$ 24 36 $ dollar sign
% 25 37 % percent sign
& 26 38 & ampersand
27 39 ‘ apostrophe
(28 40 (left parenthesis
) 29 41) right parenthesis
* 2A 42 * asterisk
+ 2B 43 + plus
, 2C 44 : comma
- 2D 45 - hyphen, minus

Lahey Fortran 90 Language Reference 283

Appendix E ASCII Character Set

284

Table 22: ASCII Chart

Characte HEX Decimal ASCII Description

r Value Value Abbr.

2E 46 period, decimal point
/ 2F 47 / slash, slant
0 30 48 0 zero
1 31 49 1 one
2 32 50 2 two
3 33 51 3 three
4 34 52 4 four
5 35 53 5 five
6 36 54 6 SixX
7 37 55 7 seven
8 38 56 8 eight
9 39 57 9 nine

3A 58 colon
; 3B 59 ; semicolon
< 3C 60 < less than
= 3D 61 = equals
> 3E 62 > greater than
? 3F 63 ? question mark
@ 40 64 @ commercial at sign
A 41 65 A uppercase A
B 42 66 B uppercase B
C 43 67 C uppercase C
D 44 68 D uppercase D
E 45 69 E uppercase E

Lahey Fortran 90 Language Reference

Table 22: ASCII Chart

Characte HEX Decimal ASCII Description
r Value Value Abbr.
F 46 70 F uppercase F
G 47 71 G uppercase G
H 48 72 H uppercase H
| 49 73 | uppercase |
J 4A 74 J uppercase J
K 4B 75 K uppercase K
L 4C 76 L uppercase L
M 4D 77 M uppercase M
N 4E 78 N uppercase N
o] 4F 79] uppercase O
P 50 80 P uppercase P
Q 51 81 Q uppercase Q
R 52 82 R uppercase R
S 53 83 S uppercase S
T 54 84 T uppercase T
U 55 85 U uppercase U
Y, 56 86 \Y, uppercase V
w 57 87 w uppercase W
X 58 88 X uppercase X
Y 59 89 Y uppercase Y
z 5A 90 z uppercase Z
[5B 91 [left bracket
\ 5C 92 \ backslash
1 5D 93] right bracket

Lahey Fortran 90 Language Reference 285

Appendix E ASCII Character Set

Table 22: ASCII Chart

Characte HEX Decimal ASCII Description
r Value Value Abbr.
A 5E 94 n up-arrow, circumflex, caret
_ 5F 95 UND back-arrow, underscore
‘ 60 96 GRA grave accent
a 61 97 LCA lowercase a
b 62 98 LCB lowercase b
c 63 99 LCC lowercase ¢
d 64 100 LCD lowercase d
e 65 101 LCE lowercase e
f 66 102 LCF lowercase f
g 67 103 LCG lowercase g
h 68 104 LCH lowercase h
i 69 105 LCI lowercase i
j 6A 106 LCJ lowercase j
k 6B 107 LCK lowercase k
I 6C 108 LCL lowercase |
m 6D 109 LCM lowercase m
n 6E 110 LCN lowercase n
o 6F 111 LCO lowercase o
p 70 112 LCP lowercase p
q 71 113 LCQ lowercase q
r 72 114 LCR lowercase r
s 73 115 LCS lowercase s
t 74 116 LCT lowercase t

286 Lahey Fortran 90 Language Reference

Table 22: ASCII Chart

Characte HEX Decimal ASCII Description
r Value Value Abbr.
u 75 117 LCuU lowercase u
v 76 118 Lcv lowercase v
w 77 119 LCW lowercase w
X 78 120 LCX lowercase x
y 79 121 LCY lowercase y
z 7A 122 LCz lowercase z
{ 7B 123 LBR left brace
| 7C 124 VLN vertical line
} 7D 125 RBR right brace
~ 7E 126 TIL tilde
7F 127 DEL,RO | delete, rubout

Lahey Fortran 90 Language Reference 287

Appendix E ASCII Character Set

288 Lahey Fortran 90 Language Reference

Index

A

A edit descriptor 27
ABS function 59, 250
ACCESS= specifier 144, 182
ACHAR function 59, 257
ACOS function 60, 255
ACOSD function 265
action statement 271
ACTION= specifier 144, 182
actual argument 271
adjustable array 14
ADJUSTL function 60, 257
ADJUSTR function 61, 257
ADVANCE-= specifier 199, 236
AIMAG function 61, 250
AIMAXO function 252
AIMINO function 252
AINT function 62, 250
AJMAXO function 252
AJMINO function 252
ALGAMA function 265
ALL function 62, 259
allocatable array 12, 271
ALLOCATABLE attribute 8
ALLOCATABLE statement 34,
63-64

ALLOCATE statement 18, 37, 64—

65
ALLOCATED function 66, 259,
261
ALOG function 255
ALOG10 function 255
alternate return 48
AMAXO function 252
AMAX1 function 252
AMINO function 252
AMIN1 function 252
AMOD function 252
ANINT function 66, 250
ANY function 67, 259
apostrophe edit descriptor 29
apostrophes 29
argument 271
argument association 271
argument keyword 271

arguments
alternate return 48
intent 47
keyword 47
optional 48
procedure 46-49
arithmetic IF statement 33, 68
arithmetic operators 20
array 271
array constructor 14
array element 10, 271
array element order 10
array pointer 12, 271
array reference 10
array section 11, 271
arrays 9-15
adjustable 14
allocatable 12
assumed shape 13
assumed size 13
automatic 14
constructor 14
dynamic 12
element 10
element order 10
pointer 12
reference 10
section 11
subscript triplet 11
vector subscript 11
array-valued 271
ASIN function 69, 255
ASIND function 265
ASSIGN statement 37, 70
assigned GOTO statement 33, 69

asterisk comment character 3
ATAN function 72, 255
ATAN2 function 73, 255
ATAN2D function 265

ATAND function 265

attribute 8-9, 271

automatic array 14

automatic data object 272

B

B edit descriptor 25

BACKSPACE statement 22, 36, 73—
74

belong 272

BIT_SIZE function 74, 261

BITEST function 263

BJTEST function 263

BLANK= specifier 144, 182

blanks 1, 3

block 272

block data 54

block data program unit 272

BLOCK DATA statement 38, 54, 75

BLOCKSIZE= specifier 144, 182

BN edit descriptor 29

bounds 272

BREAK subroutine 75, 267

BTEST function 76, 263

BZ edit descriptor 29

C

C comment character 3
CABS function 250
CALL statement 33, 77
CARG function 79, 267

assignment and storage statements 37-<arriage control 23

38

assignment statement 37, 70-71, 271
assignments

defined 52
ASSOCIATED function 72, 261
association 271
assumed-shape array 13
assumed-size array 271
assumed-sized array 13

CARRIAGECONTROL=
specifier 144, 182

CASE construct 81

CASE DEFAULT 81

CASE statement 33, 81, 82-83

CCOS function 255

CDABS function 250

CDCOS function 255

CDEXP function 255

Lahey Fortran 90 Language Reference 289

Index

CDLOG function 255
CDSIN function 256
CDSQRT function 256
CEILING function 83, 250
CEXP function 255
CHAR function 84, 257
character 272
CHARACTER constant edit
descriptors 29
CHARACTER data type 4,7
CHARACTER edit
descriptor 27, 29
CHARACTER literal 7
character set 1
CHARACTER statement 34, 85—
87
character string 272
CLOG function 255
CLOSE statement 37, 87—88
CMPLX function 88, 250
collating sequence 272
colon edit descriptor 29
column 3
comments 3
asterisk 3
trailing 3
common block 35, 57, 89, 272
COMMON statement 35, 89-91
COMPLEX data type 4, 6
COMPLEX literal 6
COMPLEX statement 35, 91-92
component 272
computed GOTO statement 33,
93
concatenation operator 20
conformable 272
conformance 272
CONJG function 93, 250
connected 272
constant 5
constant expression 272
construct 272
construct name 40
constructors
array 14
structure 17
constructs
executable 40
CONTAINS statement 38, 46,
94-95

continuation character 4
continuation line 3, 4
CONTINUE statement 33, 95
control edit descriptors 28
control statements 33-34
COS function 95, 255

COSD function 265

COSH function 96, 255
COTAN function 265
COUNT function 96, 259
CPU_TIME subroutine 97, 264
CSHIFT function 98, 259
CSIN function 256

CSQRT function 256
CYCLE statement 33, 99

D

D edit descriptor 25
DABS function 250
DACOS function 255
DACOSD function 265
DASIN function 255
DASIND function 265
data 4-18, 272
literal 5
named 7
data edit descriptors 24
data entity 273
data object 273
DATA statement 35, 99-101
data type 273
data types
CHARACTER 4,7
COMPLEX 4, 6
DOUBLE PRECISION 4
INTEGER 4
LOGICAL 4,7
REAL 4,6
data types INTEGER 6
DATAN function 255
DATAN2 function 255
DATAN2D function 265
DATAND function 265
DATE_AND_TIME subroutine 101,
264
datum 273
DBLE function 103, 250
DCMPLX function 250
DCONJG function 250
DCOS function 255

290 Lahey Fortran 90 Language Reference

DCOSD function 265
DCOSH function 255
DCOTAN function 265
DDIM function 251
DEALLOCATE statement 38, 103—
104
deferred-shape specifier 12
definable 273
defined 273
defined assignment 52
defined assignment statement 273
defined operation 273
defined operations 51
DELIM= specifier 144, 182
DERF function 265
DERFC function 265
derived type component reference 17
derived types 15-17, 54, 273
component reference 17
declaration 16
definition 15
structure constructor 17
derived-type definition 15
derived-type statement 104
DEXP function 255
DFLOAT function 250
DFLOTI function 253
DFLOTJ function 253
DGAMMA function 265
DIGITS function 105, 261
DIM function 105, 251
DIMAG function 250
DIMENSION attribute 8
DIMENSION statement 9, 35, 106
DINT function 250
DIRECT= specifier 144
disassociated 273
DLGAMA function 265
DLL_EXPORT statement 107
DLL_IMPORT statement 107
DLOG function 255
DLOG10 function 255
DMAX1 function 252
DMIN1 function 252
DMOD function 252
DNINT function 250
DO statement 33, 109-110
DOT_PRODUCT function 110, 259
DOUBLE PRECISION data type 4
DOUBLE PRECISION statement 35,

Index

111-112
DPROD function 112, 251
DREAL function 250
DSIGN function 254
DSIN function 256
DSIND function 265
DSINH function 256
DSQRT function 256
DTAN function 256
DTAND function 265
DTANH function 256
dummy argument 273
dummy array 273
dummy pointer 273
dummy procedure 49, 273
DVCHK subroutine 113, 267
dynamic arrays 12

E

E edit descriptor 25
edit descriptors 24-30
A 27
apostrophe 29
B 25
BN 29
BZ 29
CHARACTER 27, 29
CHARACTER constant 29
colon 29
control 28
D 25
data 24
E 25
EN 26
ES 26
F 25
G 27
generalized 27
H 30
| 25
INTEGER 25
L 27
LOGICAL 27
numeric 25
0O 25
P 29
position 28
guotation mark 29
REAL 25
S 29

slash 28

SP 29

SS 29

T 28

TL 28

TR 28

X 28

Z 25
elemental 273
elemental procedure 42
ELSE IF statement 33, 113
ELSE statement 33, 114, 138

ELSEWHERE statement 33, 114, 234

EN edit descriptor 26
END DO statement 33, 116
END IF statement 33, 118, 138

END SELECT statement 34, 81, 118

END statement 38, 115-116
END TYPE statement 15

END WHERE statement 34, 119, 234

END= specifier 199, 236
ENDFILE statement 22, 37, 117
entity 274

ENTRY statement 34, 119-120
EOR= specifier 199, 236
EOSHIFT function 121, 259
EPSILON function 122, 261

EQUIVALENCE statement 35, 123—

124
ERF function 265
ERFC function 265

ERR= specifier 74, 87, 117, 144, 182,

199, 206, 236
ERROR subroutine 124, 267
ES edit descriptor 26
executable construct 274
executable constructs 40
executable program 274
executable statement 274
EXIST= specifier 144
EXIT statement 34, 125
EXIT subroutine 125, 267
EXP function 125, 255
explicit interface 54, 274
explicit interfaces 49
explicit-shape array 274
EXPONENT function 126, 251
expression 274
expressions 18-52
extent 274

Lahey Fortran 90 Language Reference 291

EXTERNAL attribute 8
external file 274

external function 45

external procedure 41, 274
EXTERNAL statement 35, 126
external subprogram 274
external unit 274

F

F edit descriptor 25
file 274
file position 21
file types 22-23
FILE= specifier 144,182
files 21-23
carriage control 23
formatted direct 22
formatted sequential 22
internal 23
position 21
transparent 23
unformatted direct 23
unformatted sequential 22
fixed source form 2
FLEN= specifier 144
FLOAT Function 253
FLOATI function 253
FLOATJ function 253
FLOOR function 127, 251
FLUSH subroutine 128, 267
FMT= specifier 199, 236
FORM= specifier 144, 182
format control 24
format specification 24

FORMAT statement 24, 37, 128-130

formatted direct file 22
formatted input/output 24-30
formatted sequential file 22
FORMATTED= specifier 144
FRACTION function 131, 251
free source form 3

function 274

function reference 44
function result 274

FUNCTION statement 38, 45, 131—

132
function subprogram 274
functions 43
external 45
reference 44

Index

statement 45

G

G edit descriptor 27
GAMMA function 265
Gamma function 153
generalized edit descriptor 27
generic identifier 274
generic interfaces 51
generic procedure 42
GETCL subroutine 132, 267
GETENYV function 133
global data 54
global entity 274
GOTO
computed 33, 93

GOTO statement 34, 125, 133,

157

H

H edit descriptor 30
HFIX function 251
Hollerith constant 30
host 275

host association 57, 275
HUGE function 134, 261

| edit descriptor 25
I2ABS function 250
I2DIM function 251
I2MAXO function 252
I2MINO function 252
I2MOD function 252
I2NINT function 253
I2SIGN function 254
IABS function 250
IACHAR function 134, 257
IAND function 135, 263
IBCLR function 135, 263
IBITS function 136, 263
IBSET function 136, 263
ICHAR function 137, 257
IDIM function 251
IDINT function 251
IDNINT function 253
IEOR function 138, 263
IF construct 138

IF statement 34, 140

IFIX function 251
IF-THEN statement 34, 138, 139
IIABS function 250
IIAND function 263
IIBCLR function 263
IIBITS function 263
IIBSET function 263
IIDIM function 251
IIDINT function 251
IIDNNT function 253
IIEOR function 263
IIFIX function 251
IINT function 251
IIOR function 263
IISHFT function 263
IISHFTC function 263
IISIGN function 254
IMAXO function 252
IMAX1 function 252
IMINO function 252
IMIN1 function 252
IMOD function 252
implicit interface 275
IMPLICIT statement 8, 35, 141
implicit typing 8
implied-do 100, 191, 199, 236
INCLUDE line 142
INDEX function 143, 257
ININT function 253
initialization expression 19, 275
INOT function 264
input/output 21-32
edit descriptors 24-30
editing 24-32
formatted 24-30
list-directed 30
namelist 32
non-advancing 21, 22
statements 36-37
input/output units 21
preconnected 21
INQUIRE statement 37, 144-147
inquiry function 275
instance of a subprogram 275
INT function 147, 251
INT2 function 251
INT4 function 251
INTEGER data type 4, 6
INTEGER division 21
INTEGER edit descriptors 25

292 Lahey Fortran 90 Language Reference

INTEGER literal 6
INTEGER statement 35, 148—-150
intent 275
INTENT attribute 8, 47
INTENT statement 35, 150
interface block 50, 275
interface body 275
INTERFACE statement 38, 49, 50,

151-??
interfaces 49-53

explicit 49, 54
generic 51

internal file 23, 275
internal procedure 41, 46, 275
internal subprogram 275
intrinsic 275
INTRINSIC attribute 9
intrinsic data types 4
intrinsic operations 20
INTRINSIC statement 35, 153
INTRUP subroutine 154, 267
INVALOP subroutine 155, 268
invoke 275
IOR function 156, 185, 229, 263
IOSTAT= specifier 74, 87, 117, 144,

182, 199, 206, 236
IOSTAT_MSG subroutine 156, 268
ISHFT function 157, 263
ISHFTC function 157, 263
ISIGN function 254
IZEXT function 266
IZEXT2 function 266

J

JIABS function 250
JIAND function 263
JIBCLR function 263
JIBITS function 263
JIBSET function 263
JIDIM function 251
JIDINT function 251
JIDNNT function 253
JIEOR function 263
JIFIX function 251
JINT function 251
JIOR function 263
JISHFT function 263
JISHFTC function 263
JISIGN function 254
JMAXO function 252

Index

JMAX1 function 252
JMINO function 252
JMIN1 function 252
JMOD function 252
JNINT function 253
JNOT function 264
JZEXT function 266
JZEXT2 function 266
JZEXT4 function 266

K

keyword 275

keyword argument 47

kind 4

KIND function 158, 261
kind type parameter 4, 275

L

L edit descriptor 27
label 275
LBOUND function 158, 259, 261
LEN function 159, 257, 261
LEN_TRIM function 160
length 5
length of a character string 276
length type parameter 5
LENTRIM function 257
lexical token 276
LGE function 160, 257
LGT function 161, 257
line 276
list-directed formatting 30
list-directed input/output 30
literal constant 5, 276
literal data 5
literals
CHARACTER 7
COMPLEX 6
INTEGER 6
LOGICAL 7
REAL 6
LLE function 161, 257
LLT function 162, 257
local entity 276
LOG function 162, 255
LOG10 function 163, 255
LOGICAL data type 4,7
LOGICAL edit descriptor 27
LOGICAL function 163, 264
LOGICAL literal 7

logical operators 20
LOGICAL statement 35, 164-165

M

main program 53, 276
masked array assignment 233
MATMUL function 166, 259
MAX function 167, 252
MAXO function 252
MAX1 function 252
MAXEXPONENT function 167, 261
MAXLOC function 168, 259
MAXVAL function 169, 259
MERGE function 169, 259
MIN function 170, 252
MINO function 252
MIN1 function 252
MINEXPONENT function 171, 261
MINLOC function 171, 260
MINVAL function 172, 260
MOD function 173, 252
module 276
module procedure 56, 276
MODULE PROCEDURE
statement 36, 174

MODULE statement 38, 55, 173-174

module subprogram 276
modules 54
name conflicts 56
use 56
MODULO function 175, 253
MVBITS subroutine 176, 263, 264

N

name 276
name association 276
NAME= specifier 144
named constant 276
named data 7
NAMED-= specifier 144
namelist formatting 32
namelist input/output 32
NAMELIST statement 32, 35, 176—

177
names 1

length 1

NBREAK subroutine 177, 268
NDPERR function 177
NDPERR subroutine 268
NDPEXC subroutine 178, 268

NEAREST function 179, 253
NEXTREC= specifier 144
NINT function 179, 253
NML= specifier 32, 199, 236
non-advancing input/output 22
NOT function 180, 264
NULL function 264
NULLIFY statement 38, 180
NUMBER= specifier 144
numeric edit descriptors 25
numeric type 276

O

O edit descriptor 25
obsolescent feature 276
obsolescent features 242
OFFSET function 181, 268
OPEN statement 21, 37, 181-184
OPENED-= specifier 144
operand 276
operation 276
operations

defined 51

intrinsic 20
operator 276
operators 20

arithmetic 20

concatenation 20

logical 20
optional argument 48
OPTIONAL attribute 9, 48
OPTIONAL statement 36, 48, 184
OVEFL subroutine 184, 268

P

P edit descriptor 29

PACK function 185, 229, 260

PAD= specifier 144, 182

PARAMETER attribute 8

PARAMETER statement 36, 186

PAUSE statement 34, 186

pointer 276

pointer assignment 276

pointer assignment statement 18, 38,
187, 276

pointer associated 276

pointer association 277

POINTER attribute 8, 18

POINTER function 188, 268

POINTER statement 18, 36, 188

Lahey Fortran 90 Language Reference 293

Index

pointers 18

association 18

declaration 18

pointer assignment

statement 18

position edit descriptors 28
POSITION= specifier 144, 182
PRECFILL subroutine 189, 268
PRECISION function 189, 261
pre-connected units 21
present 277
PRESENT function 48, 190, 261
PRINT statement 37, 190-192
PRIVATE attribute 8
PRIVATE statement 15, 36, 193
procedure 277
procedure arguments 46—49
procedure interface 277
procedures 41-53

arguments 46-49

dummy 49

elemental 42

external 41

function 43

generic 42

interface 49-53

internal 41, 46

module 56

specific 42

subroutine 42
processor 277
PRODUCT function 194, 260
program 277
PROGRAM statement 38, 53,

194

program structure statements 38
program unit 277
program units 53-56

block data 54

main program 53

module 54
PROMPT subroutine 195, 268
PUBLIC attribute 8
PUBLIC statement 36, 195

Q

guotation mark edit descriptor 29
guotation marks 29

R

RADIX function 196, 261

RANDOM_NUMBER
subroutine 197, 264

RANDOM_SEED subroutine 197,
264

RANGE function 198, 261

rank 277

READ statement 37, 198-200

READ= specifier 144

READWRITE= specifier 144

REAL data type 4, 6

REAL edit descriptors 25

REAL function 201, 253

REAL literal 6

REAL statement 36, 201-203

RECL= specifier 144, 182

record 277

recursion 46

RECURSIVE attribute 46

reference 277

relational operators 20

REPEAT function 203, 257

RESHAPE function 15, 204, 260

RESULT option 46

RETURN statement 34, 205

REWIND statement 22, 37, 205

RRSPACING function 206, 253

S

S edit descriptor 29

SAVE attribute 9

SAVE statement 36, 207

scalar 277

scale factor 29

SCALE function 208, 253

SCAN function 208, 258

scope 56, 277

scoping unit 39, 54, 57, 277

section subscript 278

SEGMENT function 209, 268

SELECT CASE statement 34, 81,
209-210

SELECTED_INT_KIND function 4,
210, 261

SELECTED_REAL_KIND
function 5, 211, 261

selector 278

SEQUENCE statement 15, 36, 211

SEQUENTIAL= specifier 144

294 Lahey Fortran 90 Language Reference

SET_EXPONENT function 212, 253
shape 278
SHAPE function 212, 260, 262
SIGN function 213, 254
SIN function 213, 256
SIND function 265
SINH function 214, 256
size 278
SIZE function 214, 260, 262
SIZE= specifier 199, 236
slash edit descriptor 28
SNGL function 253
source form 2—-4
fixed 2
free 3
SP edit descriptor 29
SPACING function 215, 254
special characters 1
specific procedure 42
specification expression 19, 278
specification statements 34-36
SPREAD function 215, 260
SQRT function 216, 256
SS edit descriptor 29
statement 278
statement entity 278
statement function 278
statement function statement 38, 45,
217
statement keyword 278
statement label 2, 278
statement order 39
statement separator 3, 4
statements 32
assignment and storage 37-38
control 33-34
input/output 36-37
order 39
program structure 38
specification 34-36
STATUS= specifier 87, 182
STOP statement 34, 217
stride 278
structure 278
structure component 278
structure constructor 17
subobject 278
subobject designator 278
subprogram 278
subroutine 278

Index

SUBROUTINE statement 38, 43,
218
subroutines 42
subscript 279
subscript triplet 11, 279
substring 9, 11, 279
SUM function 219, 260
SYSTEM subroutine 219, 269
SYSTEM_CLOCK
subroutine 220, 264

T

T edit descriptor 28

TAN function 221, 256

TAND function 265

TANH function 221, 256

target 18, 279

TARGET attribute 8, 18
TARGET statement 18, 36, 222
TIMER subroutine 222

TINY function 262

TL edit descriptor 28

TR edit descriptor 28

trailing comment 3
TRANSFER function 223, 264
transparent file 23
TRANSPOSE function 224, 260
TRIM function 225, 258

type declaration statement 8, 279

type parameter 279
type parameter values 279
TYPE statement 36, 226227

U

UBOUND function 227, 260, 262

ultimate component 279

undefined 279

UNDFL subroutine 228, 269

unformatted direct file 23

unformatted sequential file 22

UNFORMATTED= specifier 144

UNIT= specifier 74, 87, 117, 144,
182, 199, 206, 236

units 21

UNPACK function 229, 260

use association 279

USE statement 36, 56, 229-231

\Y,

VAL function 231, 269
variable 279

vector subscript 11, 279
VERIFY Function 233
VERIFY function 258

W

WHERE construct 233-234
WHERE statement 34, 234, 235
WRITE statement 37, 236—-238
WRITE= specifier 144

X
X edit descriptor 28

Y
YIELD subroutine 238

y4
Z edit descriptor 25

Lahey Fortran 90 Language Reference 295

	Introduction
	Manual Organization
	Notational Conventions

	Elements of Fortran
	Character Set
	Names
	Statement Labels
	Source Form
	Fixed Source Form
	Free Source Form

	Data
	Intrinsic Data Types
	Kind
	Table 1: Intrinsic Data Types

	Length
	Literal Data
	INTEGER literals
	REAL literals
	COMPLEX literals
	LOGICAL literals
	CHARACTER literals

	Named Data
	Implicit Typing
	Type Declaration Statements
	Attributes

	Substrings
	Arrays
	Array References
	Array Elements
	Array Element Order
	Array Sections
	Subscript Triplets
	Vector Subscripts
	Arrays and Substrings

	Dynamic Arrays
	Allocatable Arrays
	Array Pointers
	Assumed-Shape Arrays
	Assumed-Size Arrays
	Adjustable and Automatic Arrays

	Array Constructors
	Derived Types
	Derived-Type Definition
	Declaring Variables of Derived Type
	Component References

	Structure Constructors
	Pointers
	Associating a Pointer with a Target
	Declaring Pointers and Targets

	Expressions
	Intrinsic Operations
	Table 2: Intrinsic Operators
	INTEGER Division

	Input/Output
	Pre-Connected Input/Output Units
	Files
	File Position
	File Types
	Internal Files
	Carriage Control
	Table 3: Carriage Control

	Input/Output Editing
	Format Control
	Data Edit Descriptors
	Numeric Editing
	INTEGER Editing (I, B, O, and Z)
	REAL Editing (F, D, and E)
	EN Editing
	ES Editing
	COMPLEX Editing
	LOGICAL Editing (L)
	CHARACTER Editing (A)
	Generalized Editing (G)

	Control Edit Descriptors
	Position Editing (T, TL, TR, and X)
	Slash Editing
	Colon Editing
	S, SP, and SS Editing
	P Editing
	BN and BZ Editing

	Character String Edit Descriptors
	CHARACTER String Editing
	H Editing (obsolescent)

	List-Directed Formatting
	List-Directed Input
	Table 4: List-Directed Input Editing

	List-Directed Output
	Table 5: List-Directed Output Editing

	Namelist Formatting

	Statements
	Control Statements
	Specification Statements
	Input/Output Statements
	Assignment and Storage Statements
	Program Structure Statements
	Statement Order
	Table 6: Statement Order

	Executable Constructs
	Construct Names

	Procedures
	Table 7: Procedures
	Intrinsic Procedures
	Subroutines
	Functions
	External Functions
	Statement Functions

	Internal Procedures
	Recursion
	Procedure Arguments
	Argument Intent
	Keyword Arguments
	Optional Arguments
	Alternate Returns (obsolescent)
	Dummy Procedures

	Procedure Interfaces
	Explicit Interfaces
	Generic Interfaces
	Defined Operations
	Defined Assignment

	Program Units
	Main Program
	Block Data Program Units
	Module Program Units
	Module Procedures
	Using Modules

	Scope
	Data Sharing

	Alphabetical Reference
	ABS Function
	Description
	Syntax
	Arguments
	Result
	Example

	ACHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	ACOS Function
	Description
	Syntax
	Arguments
	Result
	Example

	ADJUSTL Function
	Description
	Syntax
	Arguments
	Result
	Example

	ADJUSTR Function
	Description
	Syntax
	Arguments
	Result
	Example

	AIMAG Function
	Description
	Syntax
	Arguments
	Result
	Example

	AINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ALL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ALLOCATABLE Statement
	Description
	Syntax
	Remarks
	Example

	ALLOCATE Statement
	Description
	Syntax
	Remarks
	Example

	ALLOCATED Function
	Description
	Syntax
	Arguments
	Result
	Example

	ANINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ANY Function
	Description:
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	Arithmetic IF Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	ASIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	Assigned GOTO Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	ASSIGN Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	Assignment Statement
	Description
	Syntax
	Remarks
	Example

	ASSOCIATED Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	ATAN Function
	Description
	Syntax
	Arguments
	Result
	Example

	ATAN2 Function
	Description
	Syntax
	Arguments
	Result
	Example

	BACKSPACE Statement
	Description
	Syntax
	Remarks
	Example

	BIT_SIZE Function
	Description
	Syntax
	Arguments
	Result
	Example

	BLOCK DATA Statement
	Description
	Syntax
	Example

	BREAK Subroutine
	Description
	Syntax
	Optional Arguments
	Remarks
	Example

	BTEST Function
	Description
	Syntax
	Arguments
	Result
	Example

	CALL Statement
	Description
	Syntax
	Remarks
	Example

	CARG Function
	Description
	Syntax
	Arguments
	Result
	Table 8: CARG result types

	Example

	CASE Construct
	Description
	Syntax
	Remarks
	Example

	CASE Statement
	Description
	Syntax
	Remarks
	Example

	CEILING Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CHAR Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CHARACTER Statement
	Description
	Syntax
	Remarks
	Example

	CLOSE Statement
	Description
	Syntax
	Remarks
	Example

	CMPLX Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	COMMON Statement
	Description
	Syntax
	Remarks
	Example

	COMPLEX Statement
	Description
	Syntax
	Remarks
	Example

	Computed GOTO Statement
	Description
	Syntax
	Remarks
	Example

	CONJG Function
	Description
	Syntax
	Arguments
	Result
	Example

	CONTAINS Statement
	Description
	Syntax
	Remarks
	Example

	CONTINUE Statement
	Description
	Syntax
	Example

	COS Function
	Description
	Syntax
	Arguments
	Result
	Example

	COSH Function
	Description
	Syntax
	Arguments
	Result
	Example

	COUNT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CPU_TIME Subroutine
	Description
	Syntax
	Required Arguments
	Example

	CSHIFT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	CYCLE Statement
	Description
	Syntax
	Example

	DATA Statement
	Description
	Syntax
	Remarks
	Example

	DATE_AND_TIME Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	DBLE Function
	Description
	Syntax
	Arguments
	Result
	Example

	DEALLOCATE Statement
	Description
	Syntax
	Remarks
	Example

	Derived-Type Definition Statement
	Description
	Syntax
	Remarks
	Example

	DIGITS Function
	Description
	Syntax
	Arguments
	Result
	Example

	DIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	DIMENSION Statement
	Description
	Syntax
	Example

	DLL_EXPORT Statement
	Description
	Syntax
	dll-export-names is a list of procedures defined i...
	Remarks
	Example

	DLL_IMPORT Statement
	Description
	Syntax
	Example

	DO Construct
	Description
	Syntax
	Remarks
	Example

	DO Statement
	Description
	Syntax
	Remarks
	Example

	DOT_PRODUCT Function
	Description
	Syntax
	Arguments
	Result
	Example

	DOUBLE PRECISION Statement
	Description
	Syntax
	Remarks
	Example

	DPROD Function
	Description
	Syntax
	Arguments
	Result
	Example

	DVCHK Subroutine
	Description
	Syntax
	Arguments
	Example

	ELSE IF Statement
	Description
	Syntax
	Example

	ELSE Statement
	Description
	Syntax
	Example

	ELSEWHERE Statement
	Description
	Syntax
	Remarks
	Example

	END Statement
	Description
	Syntax
	Remarks
	Example

	END DO Statement
	Description
	Syntax
	Remarks
	Example

	ENDFILE Statement
	Description
	Syntax
	Remarks
	Example

	END IF Statement
	Description
	Syntax
	Remarks
	Example

	END SELECT Statement
	Description
	Syntax
	Remarks
	Example

	END WHERE Statement
	Description
	Syntax
	Example

	ENTRY Statement
	Description
	Syntax
	Remarks
	Example

	EOSHIFT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	EPSILON Function
	Description
	Syntax
	Arguments
	Result
	Example

	EQUIVALENCE Statement
	Description
	Syntax
	Remarks
	Example

	ERROR Subroutine
	Description
	Syntax
	Arguments
	Example

	EXIT Statement
	Description
	Syntax
	Example

	EXIT Subroutine
	Description
	Syntax
	Arguments
	Example

	EXP Function
	Description
	Syntax
	Arguments
	Result
	Example

	EXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	EXTERNAL Statement
	Description
	Syntax
	Remarks
	Example

	FLOOR Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	FLUSH Subroutine
	Description
	Syntax
	Arguments
	Example

	FORMAT Statement
	Description
	Syntax
	Remarks
	Example

	FRACTION Function
	Description
	Syntax
	Arguments
	Result
	Example

	FUNCTION Statement
	Description
	Syntax
	Remarks
	Example

	GETCL Subroutine
	Description
	Syntax
	Arguments
	Example

	GETENV Function
	Description
	Syntax
	Arguments
	Result
	Example

	GOTO Statement
	Description
	Syntax
	Remarks
	Example

	HUGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	IACHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IAND Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBCLR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBITS Function
	Description
	Syntax
	Arguments
	Result
	Example

	IBSET Function
	Description
	Syntax
	Arguments
	Result
	Example

	ICHAR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IEOR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IF Construct
	Description
	Syntax
	Remarks
	Example

	IF-THEN Statement
	Description
	Syntax
	Remarks
	Example

	IF Statement
	Description
	Syntax
	Remarks
	Example

	IMPLICIT Statement
	Description
	Syntax
	Remarks
	Example

	INCLUDE Line
	Description
	Syntax
	Remarks
	Example

	INDEX Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	INQUIRE Statement
	Description
	Syntax
	Remarks
	Example

	INT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	INTEGER Statement
	Description
	Syntax
	Remarks
	Example

	INTENT Statement
	Description
	Syntax
	Remarks
	Example

	INTERFACE Statement
	Description
	Syntax
	Remarks
	Example

	INTRINSIC Statement
	Description
	Syntax
	Remarks
	Example

	INTRUP Subroutine
	Description
	Syntax
	Arguments
	Table 9: intary values

	Example

	INVALOP Subroutine
	Description
	Syntax
	Arguments
	Example

	IOR Function
	Description
	Syntax
	Arguments
	Result
	Example

	IOSTAT_MSG Subroutine
	Description
	Syntax
	Arguments
	Example

	ISHFT Function
	Description
	Syntax
	Arguments
	Result
	Example

	ISHFTC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	KIND Function
	Description
	Syntax
	Arguments
	Result
	Example

	LBOUND Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	LEN Function
	Description
	Syntax
	Arguments
	Result
	Example

	LEN_TRIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	LGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	LGT Function
	Description
	Syntax
	Arguments
	Result
	Example

	LLE Function
	Description
	Syntax
	Arguments
	Result
	Example

	LLT Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOG Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOG10 Function
	Description
	Syntax
	Arguments
	Result
	Example

	LOGICAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	LOGICAL Statement
	Description
	Syntax
	Remarks
	Example

	MATMUL Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAX Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAXEXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	MAXLOC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MAXVAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MERGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	MIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	MINEXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	MINLOC Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MINVAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	MOD Function
	Description
	Syntax
	Arguments
	Result
	Example

	MODULE Statement
	Description
	Syntax
	Remarks
	Example

	MODULE PROCEDURE Statement
	Description
	Syntax
	Remarks
	Example

	MODULO Function
	Description
	Syntax
	Arguments
	Result
	Example

	MVBITS Subroutine
	Description
	Syntax
	Arguments
	Example

	NAMELIST Statement
	Description
	Syntax
	Remarks
	Example

	NBREAK Subroutine
	Description
	Syntax
	Remarks
	Example

	NDPERR Function
	Description
	Syntax
	Arguments
	Result
	Table 10: NDPERR bits

	Example

	NDPEXC Subroutine
	Description
	Remarks
	Example

	NEAREST Function
	Description
	Syntax
	Arguments
	Result
	Example

	NINT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	NOT Function
	Description
	Syntax
	Arguments
	Result
	Example

	NULLIFY Statement
	Description
	Syntax
	Example

	OFFSET Function
	Description
	Syntax
	Arguments
	Result
	Example

	OPEN Statement
	Description
	Syntax
	Remarks
	Example

	OPTIONAL Statement
	Description
	Syntax
	Example

	OVEFL Subroutine
	Description
	Syntax
	Arguments
	Example

	PACK Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	PARAMETER Statement
	Description
	Syntax
	Remarks
	Example

	PAUSE Statement (obsolescent)
	Description
	Syntax
	Remarks
	Example

	Pointer Assignment Statement
	Description
	Syntax
	Remarks
	Example

	POINTER Function
	Description
	Syntax
	Arguments
	Result
	Example

	POINTER Statement
	Description
	Syntax
	Remarks
	Example

	PRECFILL Subroutine
	Description
	Syntax
	Arguments
	Example

	PRECISION Function
	Description
	Syntax
	Arguments
	Result
	Example

	PRESENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	PRINT Statement
	Description
	Syntax
	Remarks
	Example

	PRIVATE Statement
	Description
	Syntax
	Remarks
	Example

	PRODUCT Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	PROGRAM Statement
	Description
	Syntax
	Remarks
	Example

	PROMPT Subroutine
	Description
	Syntax
	Arguments
	Example

	PUBLIC Statement
	Description
	Syntax
	Remarks
	Example

	RADIX Function
	Description
	Syntax
	Arguments
	Result
	Example

	RANDOM_NUMBER Subroutine
	Description
	Syntax
	Arguments
	Example

	RANDOM_SEED Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	RANGE Function
	Description
	Syntax
	Arguments
	Result
	Example

	READ Statement
	Description
	Syntax
	Remarks
	Example

	REAL Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	REAL Statement
	Description
	Syntax
	Remarks
	Example

	REPEAT Function
	Description
	Syntax
	Arguments
	Result
	Example

	RESHAPE Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	RETURN Statement
	Description
	Syntax
	Remarks
	Example

	REWIND Statement
	Description
	Syntax
	Remarks
	Example

	RRSPACING Function
	Description
	Syntax
	Arguments
	Result
	Example

	SAVE Statement
	Description
	Syntax
	Remarks
	Example

	SCALE Function
	Description
	Syntax
	Arguments
	Result
	Example

	SCAN Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SEGMENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	SELECT CASE Statement
	Description
	Syntax
	Remarks
	Example

	SELECTED_INT_KIND Function
	Description
	Syntax
	Arguments
	Result
	Example

	SELECTED_REAL_KIND Function
	Description
	Syntax
	Optional Arguments
	Result
	Example

	SEQUENCE Statement
	Description
	Syntax
	Remarks
	Example

	SET_EXPONENT Function
	Description
	Syntax
	Arguments
	Result
	Example

	SHAPE Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIGN Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIN Function
	Description
	Syntax
	Arguments
	Result
	Example

	SINH Function
	Description
	Syntax
	Arguments
	Result
	Example

	SIZE Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SPACING Function
	Description
	Syntax
	Arguments
	Result
	Example

	SPREAD Function
	Description
	Syntax
	Arguments
	Result
	Example

	SQRT Function
	Description
	Syntax
	Arguments
	Result
	Example

	Statement Function Statement
	Description
	Syntax
	Remarks
	Example

	STOP Statement
	Description
	Syntax
	Remarks
	Example

	SUBROUTINE Statement
	Description
	Syntax
	Remarks
	Example

	SUM Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	SYSTEM Subroutine
	Description
	Syntax
	Arguments
	Example

	SYSTEM_CLOCK Subroutine
	Description
	Syntax
	Optional Arguments
	Example

	TAN Function
	Description
	Syntax
	Arguments
	Result
	Example

	TANH Function
	Description
	Syntax
	Arguments
	Result
	Example

	TARGET Statement
	Description
	Syntax
	Example

	TIMER Subroutine
	Description
	Syntax
	Arguments
	Example

	TINY Function
	Description
	Syntax
	Arguments
	Result
	Example

	TRANSFER Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	TRANSPOSE Function
	Description
	Syntax
	Arguments
	Result
	Example

	TRIM Function
	Description
	Syntax
	Arguments
	Result
	Example

	Type Declaration Statement
	TYPE Statement
	Description
	Syntax
	Remarks
	Example

	UBOUND Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	UNDFL Subroutine
	Description
	Syntax
	Arguments
	Example

	UNPACK Function
	Description
	Syntax
	Arguments
	Result
	Example

	USE Statement
	Description
	Syntax
	Remarks
	Example

	VAL Function
	Description
	Syntax
	Arguments
	Result
	Table 11: VAL result types

	Example

	VERIFY Function
	Description
	Syntax
	Required Arguments
	Optional Arguments
	Result
	Example

	WHERE Construct
	Description
	Syntax
	Remarks
	Example

	WHERE Statement
	Description
	Syntax
	Remarks
	Example

	WRITE Statement
	Description
	Syntax
	Remarks
	Example

	YIELD Subroutine
	Description
	Syntax
	Example

	Fortran 77 Compatibility
	Different Interpretation Under Fortran 90
	Obsolescent Features
	Popular Extensions

	New in Fortran 90
	Miscellaneous
	Data
	Operations
	Arrays
	Execution Control
	Input/Output
	Procedures
	Modules
	New Intrinsic Procedures

	Intrinsic Procedures
	Table 12: Numeric Functions
	Table 13: Mathematical Functions
	Table 14: Character Functions
	Table 15: Array Functions
	Table 16: Inquiry and Kind Functions
	Table 17: Bit Manipulation Procedures
	Table 18: Other Intrinsic Functions
	Table 19: Standard Intrinsic Subroutines
	Table 20: VAX/IBM Intrinsic Functions Without Fort...
	Table 21: Utility Procedures

	Glossary
	ASCII Character Set
	Table 22: ASCII Chart

